Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\left(2018+1\right).2018}{2}=2037171\)
\(B=1.2+2.3+3.4+...+2018.2019\)
\(3B=1.2.3+2.3.3+3.4.3+...+2018.2019.3\)
\(3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2018.2019.\left(2020-2017\right)\)
\(3B=1.2.3+2.3.4-1.2.3+...+2018.2019.2020-2017.2018.2019\)
\(3B=2018.2019.2020\)
\(B=\frac{2018.2019.2020}{3}\)
\(B=2743390280\)
Chúc bạn học tốt ~
a)\(\left|-2\right|^{300}=2^{300}=\left(2^2\right)^{150}=4^{150}\) ; \(\left|-4\right|^{150}=4^{150}\)
\(\Rightarrow\left|-2\right|^{300}=\left| -4\right|^{150}\)
b) \(\left|-2\right|^{300}=2^{300}=\left(2^3\right)^{100}=8^{100}\) ; \(\left|-3\right|^{200}=3^{200}=\left(3^2\right)^{100}=9^{100}\)
Mà 8 < 9 \(\Rightarrow8^{100}< 9^{100}\) hay \(\left|-2\right|^{300}< \left|-3\right|^{200}\)
\(a,3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Có \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
\(b,5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}>25^{100}=5^{200}\)
b , Áp dụng và so sánh :
3^200 và 2^300
3^200 = ( 3^2 )^100 = 9^100
2^300 = ( 2^3 )^100 = 8^100
Vì 9^100 > 8^100 => 3^200 > 2^300
Vậy 3^200 > 2^300
5^200 và 2^500
5^200 = ( 5^2 )^100 = 25^100
2^500 = ( 2^5 )^100 = 32^100
Vì 26^100 < 32^100 => 5^200 < 2^500
Vậy 5^200 < 2^500
a) 1/3300 = 1/ (33)100 = 1/ 27100 (1)
1/5200 = 1 / (52)100 = 1/ 25100 (2)
Từ (1) và (2) suy ra 1/3300 < 1/5200
b) n/3n+1 = 4n/12n+4
Vì 4n+1/12n+3 > 4n/12n+3>4n/12n+4
Suy ra n/3n+1 < 4n+1/12n+3
a) Ta có:
3200 = (32)100 = 9100
2300 = (23)100 = 8100
Vì 9100 > 8100 nên 3200 > 2300
b) Đề đúng phải là so sánh 1255 và 257 nhé!
Ta có: 1255 = (53)5 = 515
257 = (52)7 = 514
Vì 515 > 514 nên 1255 > 257
c) Ta có:
920 = (32)20 = 340
2713 = (33)13 = 339
Vì 340 > 339 nên 920 > 2713
d) Ta có:
1630 = (24)30 = 2120 > 2100
=> 1630 > 2100
a) 3200=32.100=(32)100=9100
2300=23.100=(23)100=8100
Vì: 9100> 8100 (9>8)=> 3200>2300
b) Không thể nào so sánh được nha bạn.
c) 920=( 32)20=32.20=340
2713=(33)13=33.13=339
Vì: 340>339 (40>39)
=> 920>2713
d) 1630=(24)30=24.30=2120
Vì: 2120>2100 (120>100)=> 1630>2100
a, \(2^{300}=2^{3.100}=8^{100}\)
\(3^{200}=3^{2.100}=9^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b, \(2^{91}=2^{13.7}=8192^7\)
\(5^{35}=5^{5.7}=3125^7\)
Vì \(8192^7>3125^7\Rightarrow2^{91}>5^{35}\)
c, \(9^{12}=\left(3^3\right)^{12}=3^{36}\)
\(27^7=\left(3^3\right)^7=3^{21}\)
Vì \(3^{36}>3^{21}\Rightarrow9^{12}>27^7\)
a) 2^300= 2^3.100=8^100
3^200=3^2.100=9^100
Vì 9^100>8^100 => 3^100>2^300
b) 2^91=2^13.7=8192^7
5^35=5^5.7=3195^7
Vì 8192^7>3125^7 => 2^91>5^35
c) 9^12=(33)12=3^36
27^7=(33)7=3^21
Vì 3^36>3^21 => 9^12>27^7
Bài 1:
a) Ta có:
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
\(2^{300}=\left(2^3\right)^{100}=8^{100}\)
Vì \(9^{100}>8^{100}\Rightarrow3^{200}>2^{300}\)
b) Ta có:
\(71^{50}=\left(71^2\right)^{25}=5041^{25}\)
\(37^{75}=\left(37^3\right)^{25}=50653^{25}\)
Vì \(5041^{25}< 50653^{25}\Rightarrow71^{50}< 37^{75}\)
c) Ta có:
\(\frac{201201}{202202}=\frac{201.1001}{202.1001}=\frac{201}{202}\)
\(\frac{201201201}{202202202}=\frac{201.1001001}{202.1001001}=\frac{201}{202}\)
\(\Rightarrow\frac{201201}{202202}=\frac{201201201}{202202202}\)
Bài 2:
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{50^2}\)
Ta có: \(\frac{1}{1^2}=1;\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1+1-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
b) \(B=2^1+2^2+2^3+...+2^{30}\) (Có 30 số hạng)
\(\Rightarrow B=\left(2^1+2^2+...+2^5+2^6\right)+\left(2^7+2^8+2^9+...+2^{12}\right)+...+\left(2^{25}+2^{26}+...+2^{29}+2^{30}\right)\)
(có \(30:6=5\) nhóm)
\(\Rightarrow B=1\left(2^1+2^2+...+2^6\right)+2^6\left(2^1+2^2+...+2^6\right)+.....+2^{24}\left(2^1+2^2+...+2^6\right)\)
\(\Rightarrow B=1.126+2^6.126+2^{12}.126+...+2^{24}.126\)
\(\Rightarrow B=126.\left(1+2^6+2^{12}+...+2^{24}\right)\)
\(\Rightarrow B=21.6.\left(1+2^6+2^{12}+...+2^{24}\right)⋮21\)
\(\Rightarrow B⋮21\)
a,3^200 và 2^300
3^200=(3^2)^100=9^100
2^300=(2^3)^100=8^100
Vì 9^100>8^100=>3^200>2^300
Vậy 3^200>2^300
b, 71^50 và 37^75
71^50=(71^2)^25=5041^25
37^75=(37^3)^25=50653^25
Vì 5041^25<50653^25=> 71^50<37^75
Vậy 71^50<37^75
c, 201201/202202 và 201201201/202202202
201201201/202202202=201201/202202
=> 201201/202202=201201201/202202202
Vậy 201201/202202=201201201/202202202
a)
Ta có:3200=32.100=(32)100=9100
2300=23.100=(23)100=8100
Vì 9100>8100
Nên 3200>2300
b)
Ta có: 7150=712.25=(712)25=504125
3775=373.25=(373)25=5065325
Vì 504125<5065325
Nên 7150<3775
c)
Ta có:
201201/202202=201.1001/202.1001=201/202
201201201/202202202=201.1001001/202.1001001001= 201/202
Vì 201/202=201/202
Nên 201201/202202=201201201/202202202
a) ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
=> 8^100 < 9^100 => 2^300 < 3^200
b) ta có: 2109 > 2108
phần c bn ghi thiếu đề r
a) ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
=> 8^100 < 9^100 => 2^300 < 3^200
b) ta có: 2109 > 2108
phần c bn ghi thiếu đề r