K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 3 2022

Người ta sử dụng BĐT Cô-si cho mẫu số:

\(cos^2a+2sin^2a\ge2\sqrt{cos^2a.2sin^2a}=2\sqrt{2}\left|sina.cosa\right|\ge2\sqrt{2}sina.cosa\)

Nhưng trong trường hợp bài này chỉ áp dụng được khi \(sina.cosa>0\)

17 tháng 1 2021

Sigma CTV         , Tan Thuy Hoang CTV, Nguyễn Việt Lâm Giáo viên, Hồng Phúc CTV

27 tháng 10 2018

Đáp án D

8 tháng 6 2019

2x + 3 ≥ -6

Vế trái của bất phương trình: 2x + 3

Vế phải của bất phương trình: -6

27 tháng 3 2017

Khi x = 2 vế trái của phương trình đã cho không có nghĩa do mẫu bằng 0

Vế phải có nghĩ khi x - 1 ≥ 0 ⇔ x ≥ 1

21 tháng 10 2020

Bài 5. ÔN TẬP CUỐI NĂM

21 tháng 10 2020

Bài 5. ÔN TẬP CUỐI NĂM

10 tháng 2 2019

 Thử trực tiếp ta thấy ngay x = -3 là nghiệm của bất phương trình (1) nhưng không là nghiệm bất phương trình (2), vì vậy (1) và (2) không tương đương do đó phép bình phương hai vế một bất phương trình không phải là phép biến đổi tương đương.

8 tháng 5 2017

Thay \(x=-3\) vào bất phương trình (1) ta được:
\(3.\left(-3\right)+1< -3+3\)\(\Leftrightarrow-8< 0\) ( đúng)
Vậy \(x=-3\) là nghiệm của bất phương trình (1)
TThay \(x=-3\) vào bất phương trình (2) ta được:
\(\left(3.\left(-3\right)+1\right)^2< \left(-3+3\right)^2\)\(\Leftrightarrow64< 0\) (vô lý).
Vậy \(x=-3\) là nghiệm của bất phương trình (2).
Vậy hai bất phương trình (1) và (2) không tương đương và bình phương hai vế của bất phương trình không là phép biến đổi tương đương.

29 tháng 12 2015

em moi hoc lop 6

29 tháng 12 2015

với điều kiện x>=1 thì 2 pt mới tương đương. Nếu k có đk thì chỉ là suy ra thôi :)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Vế trái của bất phương trình là đa thức bậc 2 và có hệ số cao nhất là 3 > 0

8 tháng 5 2017

Nhân hai vế của bất phương trình với x ta được:\(1< x\). Bất phương trình này không tương đương với bất phương trình \(\dfrac{1}{x}< 1\) vì chưa thể khẳng định \(x>0\) mà ta phải xét hai trường hợp:
Th1: x > 0: \(Bpt\Leftrightarrow1< x\).
Th2: x < 0 \(Bpt\Leftrightarrow1>x\)