Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015^{2014}+1}{2015^{2014}-1}=\frac{2015^{2014}-1+2}{2015^{2014}-1}=1+\frac{2}{2015^{2014}-1}.\)
\(B=\frac{2015^{2014}-1}{2015^{2014}-3}=\frac{2015^{2014}-3+2}{2015^{2014}-3}=1+\frac{2}{2015^{2014}-3}\)
mà \(\frac{2}{2015^{2014}-1}< \frac{2}{2015^{2014}-3}\)( 20152014 -1 > 20152014 - 3)
\(\Rightarrow A< B\)
Ta có :
\(\frac{2014^{2015}+1}{2014^{2015}+1}\)\(=1\)
\(\frac{2014^{2014}+1}{2014^{2013}+1}\)\(>1\)
\(\Rightarrow A< B\)
Vậy \(A< B\)
gọi \(A=\frac{2015^{2015}+1}{2015^{2016}+1};B=\frac{2015^{2014}+1}{2015^{2015}+1}\)
\(\Rightarrow A=\frac{2015^{2015}+1}{2015^{2016}+1}<\frac{2015^{2015}+2014+1}{2015^{2016}+2014+1}=\frac{2015^{2015}+2015}{2015^{2016}+2015}=\frac{2015\left(2015^{2014}+1\right)}{2015\left(2015^{2015}+1\right)}=\frac{2015^{2014}+1}{2015^{2015}+1}=B\)
\(B-1=\frac{2015^{2014}+1}{2015^{2013}+1}-1=\frac{2015^{2015}+2015}{2015^{2014}+2015}-1=\frac{2015^{2015}-2015^{2014}}{2015^{2014}+2015}\)
\(A-1=\frac{2015^{2015}+1}{2015^{2014}+1}-1=\frac{2015^{ }^{2015}-2015^{2014}}{2015^{2014}+1}\)
=> A- 1 > B- 1 => A>B
Câu b) Làm tương tự bạn nhé