K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

Ta có:

\(\overline{ab}+\overline{ba}\)

\(=10a+b+10b+a\)

\(=11a+11b\)

Ta thấy: \(11a⋮11;11b⋮11\)

\(\Rightarrow\overline{ab}+\overline{bc}⋮11\)

25 tháng 10 2017

Ta có :

ab - ba

= 10a - b - 10b + a

= 11a + 11b

Ta thấy : 11a : 11 ; 11b : 11

=> ab + bc : 11

Chúc học giỏi

15 tháng 11 2015

a)aaaaa=a*111111=a*15873*7(chia hết cho 7)

b)abcabc=abc*1001=abc*91*11(chia hết cho 11)

c)aaa=a*111=a*3*37(chia hết cho 37)

d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)

16 tháng 11 2015

ab + ba

= 10a + b + 10b + a

= 11a + 11b 

= 11 ( a + b ) chia hết cho 11 =>ĐPCM

16 tháng 11 2015

Mình làm xong bạn có tick ko?

13 tháng 5 2019

Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).

30 tháng 3 2016

a,88+220=(23)8+220=224+220=220.24+220=220.(24+1)=220.17 chia hết cho 17

b,Ta có:13!-11!=(1 x 2 x 3 x 4 x 5 x ............... 11 x 12 x 13)-(1 x 2 x 3 x 4 x 5 x ............ x 11) chia hết cho 5 và 11 nên chia hết cho 55

2 tháng 5 2017

 c/m: 10^n + 18n - 1 chia hết cho 27
10^n + 18n - 1= (10^n - 1) + 18n
10^n -1: vs n=2 10^2-1=99 (2 chữ số 9)
vs n=3 10^3-1=999 (3 chữ số 9)
10^n -1=99...9(n chữ số 9)
10^n -1 - 18n=99...9 + 18n
=9(11...1 + 2n) (11....1 có n chữ số 1)
=[9x3(11...1 + 2n)]/3 (Nhân 3 rồi chia cho 3)
=27[(11...1 + 2n)]/3]
Vậy ta cần chứng minh 11...1 + 2n chia hết cho 3 thì biểu thức trên sẽ chia hết cho 27
dấu hiệu của 1 số chia hết cho 3 là tổng các số trong số đó sẽ chia hết cho 3
Xét số 11...1=1+1+...+1 (n chữ số 1)
vs n=2 =>1+1=2=n
n=3 =>1+1+1=3=n
vậy tổng các chữ số của 11...1=1+1+...+1=n (n chữ số 1)
=>11...1+2n có tổng các chữ số =n+2n=3n hiển nhiên chia hết cho 3 (đpcm)

2 tháng 5 2017

S=(5+52+53+54)+(55+56+57+58)+...........+(52009+52010+52011+52012)

  =780+54(5+52+53+54)+...........+52008(5+52+53+54)

  =65*12 + 54*65*12 + .......... + 52008*65*12

  =65*12(1+54+...+52008) chia hết cho 65

=> S chia hết cho 65

22 tháng 1 2016

Theo đề bài ta có:

A = \(1+2+2^2+2^3+...+2^{11}\)

\(\Rightarrow A=2^0+2^1+2^2+2^3+...+2^{11}\)

\(\Leftrightarrow A=2^0.\left(1+2+2^2+2^3+2^4+2^5\right)+2^6.\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(\Rightarrow A=2^0.63+2^6.63\)

\(\Rightarrow A=63.\left(2^0+2^6\right)\)

\(\Rightarrow A=63.65\)

Vậy A chia hết cho 13 ( vì 65 chia hết cho 13)