K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2021

a: \(AB=\sqrt{\left(2-1\right)^2+\left(-1-1\right)^2}=\sqrt{5}\)

\(BC=\sqrt{\left(-2-2\right)^2+\left(-3+1\right)^2}=2\sqrt{2}\)

\(AC=\sqrt{\left(-2-1\right)^2+\left(-3-1\right)^2}=5\)

Đề sai rồi bạn

19 tháng 12 2015

\(AB^2=\left(1+1\right)^2+\left(2-0\right)^2=8\)

\(AC^2=\left(5+1\right)^2+\left(-2-0\right)^2=39\)

\(BC^2=\left(5-1\right)^2+\left(-2-2\right)^2=32\)

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

A B 5 1 2 -2 C D E F

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => \(\overrightarrow{BH}.\overrightarrow{AC}=0\) => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: \(\frac{y+1}{-2+1}=\frac{x-0}{5-0}\) => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

23 tháng 12 2015

AB2=(1+1)2+(20)2=8

AC2=(5+1)2+(20)2=39

BC2=(51)2+(22)2=32

Cạnh lớn nhất là AC, ta có:

AC2 < AB2 + BC2

=> Tam giác ABC nhọn

AB512-2CDEF

Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE) 

                     = 5.4 - 4.4/2 - 5.1/2 - 3.1/2

                      = 8

Gọi H(x,y), ta có BH vuông góc với AC => BH.AC=0 => (x - 1).(5-0) + (y - 2)(-2 +1) = 0

=> 5x - y = 3    (1)

Phương trình đt AC là: y+12+1=x050 => 5y + x = -5

Vì H thuộc AC nên  5y + x = -5    (2)

Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13

Vậy H(5/13; -14/13)

 

\(\overrightarrow{AB}=\left(1;2\right)\)

\(\overrightarrow{AC}=\left(4;-2\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\)

nên ΔABC vuông tại A

\(AB=\sqrt{1^2+2^2}=\sqrt{5}\)

\(AC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{10}{2}=5\left(đvdt\right)\)

NV
5 tháng 1 2022

\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(4;-2\right)\\\overrightarrow{AB}=\left(1;2\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{AC}.\overrightarrow{AB}=4.1+\left(-2\right).2=0\)

\(\Rightarrow AC\perp AB\) hay tam giác vuông tại A

\(AB=\sqrt{1^2+2^2}=\sqrt{5}\) ; \(AC=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=5\)

a, Vec-tơ AB=(-3;4) => vtpt của đường thẳng AB là (4;3)
Pt AB: 4(x-2)+3(y-2)=0 <=> 4x+3y-14=0
Pt AC và BC làm tương tự
b, Đường cao AH có vtpt là vecto BC=(-4;-3) hay =(4;3)
Pt đường cao AH: 4(x-2)+3(y-2)=0 <=> 4x+3y-14=0

c) ta có độ dài đoạn AB= căn của (-1+2)^2+(6-2)^2 =5
            "        "       BC= căn của (-5+1)^2+(3-6)^2 =5
     ==> Tan giác ABC cân tại B   (1)
lại có véc tơ AB=(-3;4), véc tơ BC=(-4;-3) =>véc tơ AB*BC =(-3)*4+(-4)*(-3) =0
    ===>tam giác vuông tại B        (2)
từ (1,2) ==> tam giác ABC vuông cân

a: \(\overrightarrow{AB}=\left(-4;2\right)\)

\(\overrightarrow{BC}=\left(6;-3\right)\)

Vì \(\overrightarrow{BA}\cdot\overrightarrow{BC}=\overrightarrow{0}\) nên ΔABC vuông tại B

10 tháng 10 2017

a.

Gọi (D):y=ax+b chứa điểm A, C

(D'):y=a'x+b' chứa điểm B, C

* Ta có: A thuộc (D) khi 1= 2a+b (1)

C thuộc (D) khi 4= 3a+b (2)

Giải hệ (1), (2) ta suy ra a=3 , b=-5

* Ta có: B thuộc (D') khi 3=6a'+b' (3)

C thuộc (D') khi 4=3a'+b' (4)

Giải hệ (3), (4) ta suy ra a=-1/3 , b= 5

Ta thấy: a.a' = 3.(-1/3)=-1

Suy ra (D) vuông góc (D') tại điểm chung C của của 2 cạnh (5)

Vậy tam giác ABC vuông tại C

Theo công thức tính cạnh của đoạn thẳng trong hệ trục tọa độ ta có:

AC=\(\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_C\right)^2}=\sqrt{\left(2-3\right)^2+\left(1-4\right)^2}\)\(=\sqrt{10}\)

BC=\(\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}=\sqrt{\left(6-3\right)^2+\left(3-4\right)^2}\)\(=\sqrt{10}\)

Vậy AC=BC (6)

Từ (5) và (6) ta suy ra tam giác ABC vuông cân tại C

SABC=\(\dfrac{1}{2}\).AB.BC=\(\dfrac{1}{2}.\sqrt{10}.\sqrt{10}=\dfrac{1}{2}.10=\)5 (đvdt)

b. Làm tương tự câu a tìm độ dài các cạnh AB, BD, DA và tính diện tích bằng công thức SABD=\(\sqrt{p\left(p-AB\right)\left(p-BD\right)\left(p-DA\right)}\) với p là nửa chu vi tam giác ABD \(p=\dfrac{1}{2}\left(AB+BD+DA\right)\)

Tiếp tục dùng công thức SABD=\(=\dfrac{1}{2}.AB.BD.sinB\) các số liệu nêu trên đã có, chỉ cần thế vào là có góc B

Gọi I là tâm. Tìm độ dài bán kình bằng công thức SABD=\(\dfrac{AB.BD.DA}{4AI}\)

ta tìm được độ dài AI còn cách xác định tâm thì dựa vào giao điểm 2 đường thẳng (d) chứa đoạn AI và (d') chứa đoạn BI là xong