Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{n-5}{n+1}=\frac{n+1-6}{n+1}=1-\frac{6}{n+1}\)
=> A có giá trị nguyên <=> n + 1 \(\in\){ \(\pm1;\pm2;\pm3;\pm6\)}
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
b) Muốn cho \(\frac{n-5}{n+1}\)là phân số tối giản thì (n - 5,n + 1) = 1 . Ta biết rằng nếu (a,b) = 1 thì (a,a - b) = 1 , từ đó suy ra (n - 5,6) = 1
=> (n - 5) không chia hết cho ...(tự điền ra) hay n là số chẵn
Bài giải
Ta có: 3n - 5 \(⋮\)n + 1
=> 3(n + 1) - 8 \(⋮\)n + 1
Vì 3(n + 1) - 8 \(⋮\)n + 1 và 3(n + 1) \(⋮\)n + 1
Nên 8 \(⋮\)n + 1
Tự làm tiếp nha ...
Ta có: 4n + 3 \(⋮\)n - 1
=> 4(n - 1) + 7 \(⋮\)n - 1
Vì 4(n - 1) + 7 \(⋮\)n - 1 và 4(n - 1) \(⋮\)n - 1
Nên 7 \(⋮\)n - 1
.................
a) Ta có:
\(S=1+2+2^2+...+2^{119}\)
\(S=\left(1+2+2^2+2^3\right)+\left(2^3+2^4+2^5+2^6\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}\right)\)
\(S=\left(1+2+2^2+2^3\right)+2^3\cdot\left(1+2+2^2+2^3\right)+...+2^{116}\cdot\left(1+2+2^2+2^3\right)\)
\(S=15+15\cdot2^3+...+15\cdot2^{116}\)
\(S=15\cdot\left(1+2^3+...+2^{116}\right)\) chia hết cho 5
b) \(S=1+2+2^2+...+2^{119}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{120}\)
\(\Rightarrow2S-S=\left(2+2^2+...+2^{120}\right)-\left(1+2+...+2^{119}\right)\)
\(\Leftrightarrow S=2^{120}-1\)
\(\Leftrightarrow2^n=S+1=2^{120}\)
\(\Rightarrow n=120\)
Ta có : \(n+4=n-1+\)\(5\)
Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)
Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)
\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)
N - 1 | 1 | 5 |
N | 2 | 6 |
a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)
b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)
vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
Ta có: 1! = 1 nên 1 + 1! = 2 = 1.2 = 2!
2! + 2.2! = 2!.( 1 + 2 ) = 2! . 3 = 3!
3! + 3.3! = 3! . 4 ;...............
Tương tự như vậy cho tới 100.100!
100! + 100.100! = 100! . 101 = 101!
# Kiseki no enzeru #