K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2020

\(A=x\left(2x+3\right)-4\left(x+1\right)-2x\left(x-\frac{1}{2}\right)\)

\(=2x^2+3x-4x-4-2x^2+x\)

\(=\left(2x^2-2x^2\right)+\left(3x+x-4x\right)-4\)

\(=-4\)

\(\left(2x^3-3xy+12x\right)\left(-\frac{1}{6}xy\right)\)

\(=-\frac{2}{6}x^3.xy+\frac{3}{6}xy.xy-\frac{12}{6}x.xy\)

\(=-\frac{1}{3}x^4y+\frac{1}{2}x^2y^2-2x^2y\)

BÀi 1

Ta có A = x( 2x + 3 ) - 4( x + 1 ) - 2x( x - 1/2 ) = ( 2x.x + 3.x ) - ( 4.x + 4.1 ) - ( 2x.x - 1/2.2x )

= 2x2 + 3x - 4x - 4 - 2x2 + x

= - 4.

Chọn đáp án C

Bài 2

Ta có: ( 2x3 - 3xy + 12x )( - 1/6xy ) = ( - 1/6xy ).2x3 - 3xy( - 1/6xy ) + 12x( - 1/6xy )

= - 1/3x4y + 1/2x2y2 - 2x2y

Chọn đáp án D

Hok tốt

8 tháng 3 2019

xuống lớp 1 học bạn ơi

13 tháng 8 2019

Bn nên ra từng bài ra vậy ai làm cho . hum

5 tháng 7 2017

Bài 1.

a. -3xy2 . (4x2 - xy + 2y2)= -12x3y2 + 3x2y3 - 6xy4

b. 3xn-2yn-1 . (xn+2 - 2xn+1yn + yn+1) = 3x2nyn-1 - 6x2n-1y2n-1 + 3xn-2y2n

Bài 2.

a. 2x(x+3)-3x2(x+2)+x(3x2+4x-6)

= 2x2+6x-3x3-6x2+3x3+4x2-6x

= 0

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

b. 3x(2x2-x)-2x2(3x+1)+5(x2-1)

= 6x3-3x2-6x3-2x2+5x2-5

= -5

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

c. 4(x-6)-x2(3x+2)+x(5x-4)+3x2(x-1)

= 4x-24-3x3-2x2+5x2-4x+3x3-3x2

= -24.

Vậy giá trị của biểu thức trên không phụ thuộc vào biến x.

d. xy(3x2-6xy)-3(x3y-2x2y2-1)

= 3x3y-6x2y2-3x3y+6x2y2+3

= 3.

Vậy giá trị của biểu thức trên không phụ thuộc vào các biến x,y.

17 tháng 7 2019

a) =2x^3-10x^2-2x+3x^2-x

=2x^3-7x^2-3x

17 tháng 7 2019

b) -10x^4y^2z^2+35x^3y^2z^2+4x^4y^2z^2+4x^3y^2z^2

=-6x^4y^2z^2+39x^3y^2z^2

a) Ta có: \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)\)

\(=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)\)

\(=x^2+y^2\)

b) Ta có: \(\left(49x^2-81y^2\right):\left(7x+9y\right)\)

\(=\frac{\left(7x+9y\right)\left(7x-9y\right)}{7x+9y}\)

\(=7x-9y\)

c) Ta có: \(\left(x^3+3x^2y+3xy^2+y^3\right):\left(x+y\right)\)

\(=\left(x+y\right)^3:\left(x+y\right)\)

\(=\left(x+y\right)^2=x^2+2xy+y^2\)

d) Ta có: \(\left(x^3-3x^2y+3xy^2-y^3\right):\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3:\left(x-y\right)^2\)

\(=\left(x-y\right)\)

e)Sửa đề: \(\left(8x^3+1\right):\left(2x+1\right)\)

Ta có: \(\left(8x^3+1\right):\left(2x+1\right)\)

\(=\frac{\left(2x+1\right)\left(4x^2-2x+1\right)}{2x+1}\)

\(=4x^2-2x+1\)

f) Ta có: \(\left(8x^3-1\right):\left(4x^2+2x+1\right)\)

\(=\frac{\left(2x-1\right)\left(4x^2+2x+1\right)}{4x^2+2x+1}\)

\(=2x-1\)

2 tháng 9 2020

a, (x4 + 2x2y2 + y4) : (x2 + y2)

= (x2 + y2)2 : (x2 + y2)

= x2 + y2

b, (49x2 - 81y2) : (7x + 9y)

= (7x - 9y)(7x + 9y) : (7x + 9y)

= 7x - 9y

c, (x3 + 3x2y + 3xy2 + y3) : (x + y)

= (x + y)3 : (x + y)

= (x + y)2

d, (x3 - 3x2y + 3xy2 - y3) : (x2 - 2xy + y2)

= (x - y)3 : (x - y)2

= x - y

Phần e thiếu thì phải

f, (8x3 - 1) : (4x2 + 2x + 1)

= (2x - 1)(4x2 + 2x + 1) : (4x2 + 2x + 1)

= 2x - 1

Chúc bn học tốt!

24 tháng 6 2015

hình như lớp 8 mà mình bấm bị lộn ai bik chỉ mình vs

 

11 tháng 8 2016

a)  3x( 2x + 3) -(2x+5)(3x-2)=8

<=> 6x^2+9x-6x^2+4x-15x+10=8

<=> -2x+10=8

<=> -2x= 8-10 = -2

<=> x=1

b)  (3x-4)(2x+1)-(6x+5)(x-3)=3

<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3

<=> -8x+11=3

<=> -8x= -8

<=> x=1

c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6

<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6

<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6

<=> 12x^2+ 26x-10-12x^2-18x+12=6

<=> 8x+2=6

<=> 8x=4

<=> x= 1/2

d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27

<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27

<=> 3x2y+3xy2-(x+y)3+y3=27

<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27

<=> -x3=27

<=> x= \(-\sqrt[3]{27}\)= -3

4 tháng 10 2020

Bài 2 : 

a. A = 2 ( x3 + y3 ) - 3 ( x2 + y2 ) với x + y = 1

=> A = 2 ( x + y ) ( x2 - xy + y2 ) - 3 [ ( x + y )- 2xy ]

=> A = 2 [ ( x + y )- 3xy ] - 3 ( 1 - 2xy )

=> A = 2 ( 1 - 3xy ) - 3 + 6xy

=> A = 2 - 6xy - 3 + 6xy

=> A = - 1

B = x3 + y3 + 3xy với x + y = 1

=> B = ( x+ 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

=> B = ( x + y )3 - 3xy ( x + y - 1 )

=> B = 13 - 3xy . 0

=> B = 1

4 tháng 10 2020

Bài 1.

a) ( x - 1 )3 + ( 2 - x )( 4 + 2x + x2 ) + 3x( x + 2 ) = 16

<=> x3 - 3x2 + 3x - 1 + 8 - x3 + 3x2 + 6x = 16

<=> 9x + 7 = 16

<=> 9x = 9

<=> x = 1

b) ( x + 2 )( x2 - 2x + 4 ) - x( x2 - 2 ) = 15

<=> x3 + 8 - x3 + 2x = 15

<=> 2x + 8 = 15

<=> 2x = 7

<=> x = 7/2

c) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 15

<=> ( x - 3 )[ ( x - 3 )2 - ( x2 + 3x + 9 ) + 9( x2 + 2x + 1 ) = 15

<=> ( x - 3 )( x2 - 6x + 9 - x2 - 3x - 9 ) + 9x2 + 18x + 9 = 15

<=> ( x - 3 ).(-9x) + 9x2 + 18x + 9 = 15

<=> -9x2 + 27x + 9x2 + 18x + 9 = 15

<=> 45x + 9 = 15

<=> 45x = 6

<=> x = 6/45 = 2/15

d) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 3

<=> x( x2 - 25 ) - ( x3 + 8 ) = 3

<=> x3 - 25x - x3 - 8 = 3

<=> -25x - 8 = 3

<=. -25x = 11

<=> x = -11/25

Bài 2.

a) A = 2( x3 + y3 ) - 3( x2 + y2 )

= 2( x + y )( x2 - xy + y2 ) - 3x2 - 3y2

= 2( x2 - xy + y2 ) - 3x2 - 3y2

= 2x2 - 2xy + 2y2 - 3x2 - 3y2

= -x2 - 2xy - y2

= -( x2 + 2xy + y2 )

= -( x + y )2

= -(1)2 = -1

b) B = x3 + y3 + 3xy 

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 1 - 3xy.0

= 1

26 tháng 8 2017

a, Ta có: 4x2-2x+1 = (x2 -2x+1)+ 3x2=(x-1)+3x2>0 (thay x=1 và x=0 thì biểu thức vãn lớn hơn 0)

b, x4-3x2+9=x4- 6x+32 +3x2=(x2-3)2 +3x>0

c, x2+y2-2x-2y+2xy+2=(x+y)2 -1 -2(x+y-1) +1 =(x+y -1)(x+y+1) - 2(x+y-1)+1=(x+y-1)(x+y+1-2) + 1=(x+y-1)2 +1 >0

d, 2(x2+3xy+3y2)=2x2+6xy+6y2=(x2+2xy+y2) +(x2+4xy+4y2)+y2=(x+y)2+(x+2y)2+y2>0

e, 2x2+y2+2x(y-1)+2= (x2+2xy+y2) +(x2-2x+1)+1=(x+y)2+(x-1)+1>0

nhớ bấm đúng cho mình nhé!

1 tháng 10 2017

Ta có : x4 - y4 

= (x2)2 - (y2)2 

= (x2 - y2)(x2 + y2)

= (x - y)(x + y)(x2 + y2)

b) 9(x - y)2 - 4(x + y)2

= [3(x - y) - 4(x + y)][3(x - y) + 4(x + y)]

= [3x - 3y - 4x - 4y][3x - 3y + 4x + 4y]

= (-x - 7y)(x + y) 

1 tháng 10 2017

e.\(x^4+2x^2+1=\left(x^2+1\right)^2\)

c.\(x^2-9y^2=\left(x-3y\right)\left(x+3y\right)\)

f.\(-x^2-2xy-y^2+1=-\left[\left(x+y\right)^2-1\right]=-\left(x+y-1\right)\left(x+y+1\right)=\left(x-y+1\right)\left(x+y+1\right)\)

g.\(x^3-x^2-x+1==x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)=\left(x-1\right)^2\left(x+1\right)\)

h.\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

i.\(\left(x+y\right)^3-x^3-y^3=\left(x+y\right)^3-\left(x^3+y^3\right)=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

tíck mình nha bn thanks !!!!!