Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)
\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Vậy S = \(\frac{99}{100}:\frac{3}{2}\) = \(\frac{33}{50}\)
\(A=\frac{-5}{7}+\frac{3}{4}+\frac{-1}{5}+\frac{-2}{7}+\frac{1}{4}\)
\(A=\left(\frac{-5}{7}+\frac{-2}{7}\right)+\left(\frac{3}{4}+\frac{1}{4}\right)+\frac{-1}{5}\)
\(A=-1+1+\frac{-1}{5}\)
\(A=\frac{-1}{5}\)
\(B=\frac{-4}{12}+\frac{18}{45}+\frac{-6}{9}+\frac{-21}{35}+\frac{6}{30}\)
\(B=\frac{-1}{3}+\frac{2}{5}+\frac{-2}{3}+\frac{-3}{5}+\frac{1}{5}\)
\(B=\left(\frac{-1}{3}+\frac{-2}{3}\right)+\left(\frac{2}{5}+\frac{-3}{5}+\frac{1}{5}\right)\)
\(B=-1+0\)
\(B=-1\)
S=\(\frac{1}{3}.\left(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{4950}\right)\)
S=\(\frac{1}{3}.2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\right)\)
S=\(\frac{2}{3}.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)\)
S=\(\frac{2}{3}.\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)
\(F=\left(\frac{3}{1.8}+\frac{3}{8.15}+\frac{3}{15.22}+...+\frac{3}{106.113}\right)\)\(-\)\(\left(\frac{25}{50.55}+\frac{25}{55.60}+\frac{25}{60.65}+...+\frac{25}{95.100}\right)\)
\(=\frac{3}{7}\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{106}-\frac{1}{113}\right)\) - \(5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
\(=\frac{3}{7}\left(\frac{1}{3}-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{100}\right)\)
\(=\frac{3}{7}.\frac{110}{339}-5.\frac{1}{100}\)
\(=\frac{1}{7}-\frac{1}{20}=\frac{13}{140}\)
= \(\frac{3}{7}\left(\frac{7}{1.8}+\frac{7}{8.15}+...+\frac{7}{106.103}\right)-5\left(\frac{5}{50.55}+\frac{5}{55.60}+...+\frac{5}{95.100}\right)\)
=\(\frac{3}{7}\left(1-\frac{1}{8}+\frac{1}{8}-\frac{1}{15}+...+\frac{1}{106}-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{55}+\frac{1}{55}-\frac{1}{60}+...+\frac{1}{95}-\frac{1}{100}\right)\)
=\(\frac{3}{7}\left(1-\frac{1}{113}\right)-5\left(\frac{1}{50}-\frac{1}{100}\right)\)
=\(\frac{3}{7}\cdot\frac{112}{113}-5\cdot\frac{1}{100}\)
=\(\frac{48}{113}-\frac{1}{20}\)
=\(\frac{847}{2260}\)
a, Ta có:
\(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{0,6-\frac{3}{9}+\frac{3}{11}}+\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{14}}{-1-\frac{3}{7}+\frac{3}{28}}=\frac{2\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}{3\left(0,2-\frac{1}{9}+\frac{1}{11}\right)}+\frac{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}{-3\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{28}\right)}=\frac{2}{3}+\frac{-2}{3}=0\)
k đúng cho mình nha. Thanks!!!
a, bày cho mình cách viết bằng phân số đi , mình trình bày cách làm cho. k đúng cho mình nha.
Trả lời
b)(1/3+12/67+13/41)-(79/67-28/41)
=1/3+12/67+13/41-79/67+28/41
=1/3+(12/67-79/67)+(13/41+28/41)
=1/3+(-67/67)+41/41
=1/3+(-1)+1
=1/3+0
=1/3.
a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)
\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)
\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)
b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)
\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)
\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)
\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)
\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)
A= (1-1/9+1-2/10+...+1-92/100):(1/5.(1/9+1/10+...+1/100)) (tách 92 thành 92 số 1)
=(8.(1/9+1/10+...+1/100)):(1/5.(1/9+1/10+...+1/100))
=8:1/5 =40
toan lop may nói lại
A=1/3 + 1/9 + 1/18 + 1/30 + 1/45 + ... + 1/570
= 1/3(1 + 1/3 + 1/6 + 1/10 + 1/15 + ... + 1/190)
=2/3(3/2 + 1/6 + 1/12 + 1/20 + 1/30 + .... + 1/380)
=2/3(3/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + ... + 1/19 + 1/20)
=2/3(3/2+1/2-1/20)
=2/3.39/20
=13/10