Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
to giup cau nhe
Vi tat ca cac phan so tren deu nho hon 1/2 ne tong do se nho hon 1/2
Neu cau cho la dung hay chon cau tra loi cua minh nhe
Ta thầy từ: 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 mỗi số hạng đều lớn hơn 1/100 Mà tổng trên có (100-51)+1= 50 (số hạng)
Nên 1/51 + 1/52 + 1/53 + 1/54 + .....+ 1/98 + 1/99 + 1/100 > 1/100 x 50 = 50/100 = 1/2 Vậy: s > 1/2
Mình không chắc đã đúng đâu nhưng mình cứ giair thử nhé !
Ta có :
A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)+ ... + \(\frac{1}{99}-\frac{1}{100}\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
= \(\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...\frac{1}{99}\right)\)+ \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}...+\frac{1}{100}\right)\)
- \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)x 2
= \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)- \(\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)= B
Vậy , A = B
~ Chúc bạn học giỏi ! ~
(1 + (1 / 51)) X (1 + (1 / 52)) X (1 + (1 / 53)) =
1.05882352941
( 1+ 1/51 ) x ( 1 + 1/52 ) x ( 1 + 1/53 )
= ( 51/51 + 1/51 ) x ( 52/52 + 1/52 ) x ( 53/53 + 1/53 )
= 52/51 x 53/52 x 54/53
= 52 x 53 x 54/51 x 52 x 53
= 54/51 = 1 3/51 ( hỗn số )
Có \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}=+....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
=\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
= \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=1\)
\(\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{8}\right)\times\left(1+\frac{1}{15}\right)\times...\times\left(1+\frac{1}{9999}\right)\)
\(=\frac{2^2}{1\cdot3}\times\frac{3^2}{2\cdot4}\times\frac{4^2}{3\cdot5}\times...\times\frac{100^2}{99\cdot101}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot100}{1\cdot2\cdot3\cdot...\cdot99}\times\frac{2\cdot3\cdot4\cdot...\cdot100}{3\cdot4\cdot5\cdot...\cdot101}\)
\(=\frac{100}{1}\times\frac{2}{101}=\frac{200}{101}.\)
Ta có:
\(\frac{1}{51}>\frac{1}{100}\)
\(\frac{1}{52}>\frac{1}{100}\)
...
\(\frac{1}{99}>\frac{1}{100}\)
\(\frac{1}{100}=\frac{1}{100}\)
=> S = \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}+\frac{1}{100}\)
Mà số số hạng của S là: (100 - 51) : 1 + 1 = 50 (số)
=> S \(>\frac{1}{100}.50\)
=> S \(>\frac{1}{2}\)
Vậy S > 1/2.