K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

Sorry nhá mk nhầm dấu + nên kq sai : 

Ta có : (x + 3)(x - 11) + 2003

= x2 - 8x + 1970

= x2 - 8x + 16 + 1954

= (x - 4)2 + 1954

Mà (x - 4)2 \(\ge0\forall x\)

Nên : (x - 4)2 + 1954 \(\ge1954\forall x\)

Vậy GTNN của biểu thức là : 1954 khi và chỉ khi x = 4

2 tháng 7 2017

Ta có : (x + 3)(x - 11) + 2003

= x2 - 8x + 33 + 2003

= x2 - 8x + 2026

= x2 - 8x + 16 + 2010

= (x - 4)2 + 2010

Mà (x - 4)\(\ge0\forall x\)

Nên :  (x - 4)2 + 2010 \(\ge2010\forall x\)

Vậy GTNN của biểu thức là : 2010 khi và chỉ khi x = 4

11 tháng 9 2016

a) \(A=x^2-2x+5\)

\(A=x^2-2x+1+4\)

\(A=\left(x-1\right)^2+4\)

Có:  \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)

Dấu '=' xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)

Vậy: \(Min_A=4\) tại \(x=1\)

b) \(B=x^2+x+1\)

\(B=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Có: \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '=' xảy ra khi: \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)

Vậy: \(Min_B=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

11 tháng 9 2016

c) \(C=4x-x^2+3\)

\(C=-x^2+4x-4+8\) 

\(C=8-\left(x^2-4x+4\right)\)

\(C=8-\left(x-2\right)^2\)

Có: \(\left(x-2\right)^2\ge0\Rightarrow8-\left(x-2\right)^2\le8\)

Dấu '=' xảy ra khi: \(\left(x-2\right)^2=0\Rightarrow x-2=0\Rightarrow x=2\)

Vậy: \(Max_C=8\) tại \(x=2\)

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

28 tháng 6 2019

 A= 1/(x^2+2x+3)

Ta có x^2+2x+3=(x+1)^2 +2

Vì (x+1) ^2 \(\ge\)0 với mọi x

=> (x+1)^2 +2\(\ge\)2 với mọi x

=> vậy GTLN của 1/(x^2+2x+3) =1/2

Dấu bằng xảy ra khi x+1=0 => x=-1

28 tháng 6 2019

B= 1/(x^2 +x+1)

Ta có : x^2 +x+ 1 =(x^2+x+1/4)+3/4

= ( x+1/2)^2 +3/4

Vì (x+1/2)^2 \(\ge\)0 với mọi x

=> (x+1/2)^2 +3/4 \(\ge\)3/4

Vậy GTLN của 1/(x^2+x+1) =3/4

Dấu "=" xảy ra khi (x+1/2)=0 => x=1/2

30 tháng 7 2017

giúp vs

30 tháng 7 2017

mấy bài nầy dễ thôi. chỉ cần áp dụng các hằng đẳng thức là đc!

8 tháng 9 2019

Tớ làm đc 1b và 2ab thôi hehe

18 tháng 8 2017

Bài 1 :

a, \(A=x\left(x-6\right)+10\)

=x^2 - 6x + 10

=x^2 - 2.3x+9+1

=(x-3)^2 +1 >0 Với mọi x dương

18 tháng 8 2017

Cảm ơn bạn Vũ Anh Quân ;) ;) ;)