Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABC: góc BAC = 90o (gt)
=> AB2 + AC2 = BC2 (đ/lí Py-ta-go)
=> 92 + 122 = 81 + 144 = 225 = BC2
=> BC = 15 (cm)
b, Xét tam giác IAD và tam giác CAD
IA = CA (gt)
góc DAI = góc DAC = 90o (gt)
DA chung
=> tam giác IAD = tam giác CAD (c.g.c)
=> ID = DC ( cặp góc tương ứng)
c, Xét tam giác IBA và tam giác CBA
IA = IC (gt)
góc IAB = góc CAB = 90o (gt)
BA chung
=> tam giác IBA = tam giác CBA(c.g.c)
=> IB = CB ( cặp cạnh tương ứng)
Xét tam giác BDC và tam giác BDI
BC = BI (c.m trên)
BD chung
DC = DI ( câu b)
=> tam giác BDC = tam giác BDI ( c.c.c)
a) tam giác ABC vuông tại A có:
AB2 + AC2 = BC2
=> 92 + 122 = BC2
=> BC2 = 81 + 144 = 225
=> BC = \(\sqrt{225}=15cm\)
b) ???
c) ???
A B C D I Chứng minh
a, Xét ΔABC có góc BAC= 900
Áp dụng định lý Pytago ta đc: BC2= AB2+AC2
hay BC2 = 92+ 122
BC2= 81+144
BC2= 225=\(\left(\pm15\right)^2\)
BC=15(vì BC ≥ 0)
Vậy BC = 15cm
b, Xét ΔDAC và ΔDAI có:
AC = AI (gt)
Góc DAC = góc DAI (=900)
AD: cạnh chung
⇒ ΔDAC = ΔDAI (c-g-c)
⇒ DC = DI ( 2 cạnh tương ứng) (đpcm)
c, Xét ΔBAC và ΔBAI có:
AC = AI (cmt)
Góc BAC = góc BAI (=900)
AB: cạnh chung
⇒ ΔBAC = ΔBAI (c-g-c)
⇒ BA = BI ( 2 cạnh tương ứng)
và góc ABC = góc ABI ( 2 góc tương ứng)
Xét ΔDBC và ΔDBI có:
BC = BI (cmt)
Góc ABC = góc ABI (cmt)
BD: cạnh chung
⇒ ΔDBC = ΔDBI (c-g-c) (đpcm)
E D A C B F I
a) Xét \(\Delta\)BAE và \(\Delta\)DAC có: ^BAE = ^DAC ( đối đỉnh ) ; AD = AB ( gt ) ; AE = AC ( gt )
=> \(\Delta\)BAE = \(\Delta\)DAC ( c.g.c)
=> BE = DC
b) Tương tự câu a dễ dàng cm đc: \(\Delta\)ADE = \(\Delta\)ABC => ^ADE = ^ABC => DE//BC
=> ^EDI = ^DIC mà ^EDI = ^BDI ( DI là phân giác ^BDE )
=> ^DIC = ^BDI hay ^DIB = ^IDB => \(\Delta\)BDI cân tại B.
c) Ta có: ^DBC là góc ngoài tại đỉnh B của \(\Delta\)BDI => ^DBC = ^BDI + ^BID = 2. ^BID = 2. ^CIF( theo b) (1)
Có: CF là phân giác ^BCA =>^BCF = ^ACF => ^BCA = ^BCF + ^ACF = 2. ^BCF = 2. ^ICF (2)
Lại có: ^CFD là góc ngoài của \(\Delta\)FCI => ^CFD = ^CIF + ^ICF (3)
Từ (1) ; (2) ; (3) => 2 .^CFD = 2 ^CIF + 2. ^ICF = ^DBC + ^BCA = ^DBC + ^CED ( ^CED = ^BCA vì ED //BC )
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
A B C E D I
Cm: Ta có : góc BAC + góc CAD = 1800 (kề bù)
=> góc CAD = 1800 - góc BAC = 1800 - 900 = 900 (1)
Và AD = AE (gt) (2)
Từ (1) và (2) suy ra t/giác AED là t/giác vuông cân tại A
b) Xét t/giác ABE và t/giác ACD
có AB = AC (gt)
góc BAC = góc CAD = 900(cmt)
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (hai cạnh tương ứng)
c) Gọi giao điểm của BE và DC là I
tự làm
d) tự làm
Xét Tam giác ABC có : góc BAC=90 độ (gt)
=> BC^2=AC^2+AB^2(định lý Pytago)
=>BC^2=12^2+9^2
BC^2=225
=>BC=15cm