Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I A B C E H D L G F K
a) Do I đối xứng với D qua H nên HI = HD.
Xét tứ giác BDEI có HI = HD; HB = HE nên BDEI là hình bình hành.
Lại có \(\widehat{EDB}=90^o\) nên BDEI là hình chữ nhật.
b) Do BDEI là hình chữ nhật nên IE // BD và IE = BD.
Vậy thì ta cũng có ngay IE // DL và IE = DL
Suy ra tứ giác IDLE là hình bình hành (dấu hiệu nhận biết)
c) Xét tam giác EBL có ED là đường cao đồng thời trung tuyến. Vậy tam giác EBL cân tại E hay \(\widehat{EBL}=\widehat{ELB}\)
Do tam giác ABC cân tại A nên \(\widehat{EBL}=\widehat{ACB}\) , suy ra \(\widehat{ACB}=\widehat{ELB}\)
Chúng lại ở vị trí đồng vị nên EL // GC.
Theo câu b, IDLE là hình bình hành nên IE // DL và ID // EL , vậy thì ID // GC
Xét tứ giác IGCD có: IG // DC; ID // GC nên IGDC là hình bình hành.
d) Ta có EG // BC nên tam giác AEG cân tại A hay AE = AG
Xét tam giác vuông FEG có AE = AG nên \(\widehat{AEG}=\widehat{AGE}\Rightarrow\widehat{AFE}=\widehat{AEF}\Rightarrow AE=AF\)
Vậy thì A là trung điểm EF.
Theo đề bài thì DFKC là hình chữ nhật nên FK song song và bằng DC
Lại có IGCD là hình bình hành nên IG song song và bằng DC.
Vậy thì FK song song và bằng IG hay FKGI là hình bình hành.
Suy ra FG và IK cắt nhau tại trung điểm mỗi đường.
A là trung điểm FG nên A là trung điểm IK. Vậy I, A, K thẳng hàng.
a: Xét tứ giác BDEI có
H là trung điểm của BE
H là trung điểm của DI
Do đó: BDEI là hình bình hành
mà \(\widehat{EDB}=90^0\)
nên BDEI là hình chữ nhật
b: Xét tứ giác IELD có
IE//LD
IE=LD
Do đó: IELD là hình bình hành
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh