Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
a) Tam giác ABC có: MP cắt AC tại E
Mà MP thuộc (MNP)
Nên E là giao điểm của AC và (MNP)
Tam giác ABD có: MN cắt BD tại F
Mà MN thuộc (MNP)
Nên F là giao điểm của BD và (MNP)
b) Ta có: P thuộc BC
F thuộc BD
Suy ra PF thuộc (BCD)
Do đó PF và CD cùng thuộc (BCD)
Nên PF và CD cắt nhau tại một điểm (1)
Ta có: N thuộc AD
E thuộc AC
Suy ra NE thuộc (ACD)
Do đó NE và CD cắt nhau tại một điểm (2)
Từ (1) và (2) suy ra: NE, PE, CD cùng đi qua một điểm
Gọi N, Q lần lượt là trung điểm của AB , CD \(\Rightarrow\left\{{}\begin{matrix}MN\perp AB\\MQ\perp AB\end{matrix}\right.\)
Qua N kẻ đường thẳng song song với BC , cắt SC tại P
suy ra thiết diện của mặt phẳng (\(\alpha\) ) và hình chóp là MNPQ
Vì MQ là đường t/b của hình thang ABCD , \(\Rightarrow MQ=\dfrac{3a}{2}\)
MN là đường t/b của tam giác SAB; \(MN=\dfrac{SA}{2}=a\)
NP là đường t/b của tam giác SBC ; \(\Rightarrow NP=\dfrac{BC}{2}=\dfrac{a}{2}\)
Vậy diện tích hình thang MNPQ là : \(S_{MNPQ}=\dfrac{MN.\left(NP+MQ\right)}{2}=\dfrac{a}{2}.\left(\dfrac{a}{2}+\dfrac{3a}{2}\right)=a^2\)
Chọn D.
+) Từ giả thiết ta có:
- IJ là đường trung bình của tam giác ABC nên:
- EF là đường trung bình của tam giác ABD nên:
- Suy ra: tứ giác IJEF là hình bình hành (1)
- Lại có: IF là đường trung bình của tam giác ACD nên:
- Từ (1) và (2) suy ra: tứ giác IJEF là hình thoi.
⇒ IE ⊥ JF (tính chất hai đường chéo của hình thoi).
⇒ Do đó, góc giữa hai đường thẳng IE và JF là: 90°.
+) Do AM = 3MD; BN = 3NC suy ra:
+) Do P và Q lần lượt là trung điểm của AD và BC nên :
- Từ (1) và (2) suy ra:
- Suy ra: M là trung điểm của DP; N là trung điểm CQ.
+) Ta có:
Đáp án D
Xét (PQR) và (ACD) có:
Q là điểm chung
PR // (ACD) ( do PR // AC)
⇒ giao tuyến của 2 mặt phẳng là đường thẳng d đi qua Q và song song PR
d cắt AD tại điểm S cần tìm
⇒ SQ // AC
Mà Q là trung điểm CD
⇒ S là trung điểm AD