Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0;x\ne\left\{4;9\right\}\)
\(P=\left(\frac{-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4x}{x-4}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(=\left(\frac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4+4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\frac{4x\left(\sqrt{x}-2\right)^2}{3-\sqrt{x}}\)
Hình như bạn ghi nhầm đề
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\\x\ne4\end{cases}}\)
\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(\Leftrightarrow P=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(\Leftrightarrow P=\frac{4x\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{4x}{\sqrt{x}-3}\)
b) Để P < 0
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3< 0\Leftrightarrow4x>0\\\sqrt{x}-3>0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< 3\Leftrightarrow x>0\\\sqrt{x}>3\Leftrightarrow x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< 9\Leftrightarrow x>0\left(ktm\right)\\x>9\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)
Vậy để \(P< 0\Leftrightarrow x\in\varnothing\)
Để P > 0
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3>0\Leftrightarrow4x>0\\\sqrt{x}-3< 0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\Leftrightarrow x>0\left(tm\right)\\\sqrt{x}< 3\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x>9\Leftrightarrow x>0\left(tm\right)\)
Vậy để \(P>0\Leftrightarrow x>9\)
c) Để \(\left|P\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}P=1\left(tm\right)\\P=-1\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=1\)
\(\Leftrightarrow4x=\sqrt{x}-3\)
\(\Leftrightarrow4x-\sqrt{x}+3=0\)
\(\Leftrightarrow\left(2\sqrt{x}-\frac{1}{4}\right)^2+\frac{47}{48}=0\left(ktm\right)\)
Vậy để \(\left|P\right|=1\Leftrightarrow x\in\varnothing\)
1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4x}{x-3}\)
Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)
2.Với \(x>0,x\ne4,x\ne9\)
Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)
Vậy ..........
3. Với \(x>0,x\ne4,x\ne9\)
Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)
Vậy ...............
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
\(=\left(\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{x-4}\right)\cdot\dfrac{2\sqrt{x}-x}{\sqrt{x}-3}\)
\(=\dfrac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4-4x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-3}\)
\(=\dfrac{-4x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-3}\)
\(=\dfrac{4x}{\sqrt{x}-3}\)
Để P>0 thì \(\sqrt{x}-3>0\)
hay x>9
Để P<0 thì \(\sqrt{x}-3< 0\)
hay 0<x<9