\(\frac{5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

a/ Để C nguyên thì 3x+1 phải là Ư(5)

\(\Leftrightarrow3x+1\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{0;-\frac{2}{3};\frac{4}{3};-2\right\}\)

mà x nguyên nên x={0;-2}

b/ \(\frac{x+1}{x-1}=1+\frac{2}{x-1}\)\(\Rightarrow x-1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)

27 tháng 7 2019

a) Để \(C\inℤ\) 

\(\Rightarrow5⋮3x+1\)

\(\Rightarrow3x+1\inƯ\left(5\right)\)

\(\Rightarrow3x+1\in\left\{1;5;-1;-5\right\}\)

Lập bảng xét các trường hợp ta có : 

\(3x+1\)\(1\)\(5\)\(-1\)\(-5\)
\(x\)\(0\)\(\frac{4}{3}\)\(-\frac{2}{3}\)\(-2\)

Vậy \(x\in\left\{0;2\right\}\)

b) Để \(D\inℤ\)

\(\Rightarrow\left(x+1\right)⋮\left(x-1\right)\)

\(\Rightarrow\left(x-1+2\right)⋮\left(x-1\right)\)

Vì \(\left(x-1\right)⋮\left(x-1\right)\)

\(\Rightarrow2⋮\left(x-1\right)\)

\(\Rightarrow\left(x-1\right)\inƯ\left(2\right)\)

\(\Rightarrow\left(x-1\right)\in\left\{1;-1;2;-2\right\}\)

Lập bảng xét các trường hợp ta có : 

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)
\(x\)\(2\)\(0\)\(3\)\(-1\)

Vậy \(x\in\left\{2;0;3;-1\right\}\)

18 tháng 6 2019

\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)

\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)

\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)

Xét các trường hợp rồi tìm được x thôi :>

\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)

\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)

d, TT

20 tháng 6 2019

YRTSCEYHTFGELCWAMTR.HUNYLA.INBYRUVIQYQNTUNHCUYTBSEUITBVYIQNVIALVTVANYUVLNAUTGUYVTUEVUEATWEHVUTSIOERHUYDBUHEYVGYEGYEHTHGERTGVRYT

29 tháng 3 2017

a) m = 2x +5 / x +1 

= 2(x+1) + 3 / x+1

= 2 + 3/ x+ 1

Để M có giá trị nguyên thì 3 phải chia hết cho x + 1

=> x+1 = 3

=> x = 2

Vậy x = 2 thì M có giá trị nguyên

21 tháng 4 2018

a) Để \(P_{\left(x\right)}\in z\)

\(\Rightarrow\frac{2}{4-x}\in z\)

\(\Rightarrow2⋮4-x\Rightarrow4-x\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 4-x = 2 => x=2 (TM)

      4-x  = -2 => x = 6 (TM)

      4-x  = 1 => x=3 (TM) 

     4 -x  = -1 => x = 5 (TM)

KL: x = ....

b) ta có: \(\frac{3x+9}{x-4}=\frac{3x-12+21}{x-4}=\frac{3.\left(x-4\right)+21}{x-4}=\frac{3.\left(x-4\right)}{x-4}+\frac{21}{x-4}=3+\frac{21}{x-4}\)

để A(x) nhận giá trị nguyên

\(\Rightarrow\frac{21}{x-4}\in z\)

\(\Rightarrow21⋮x-4\Rightarrow x-4\inƯ_{\left(21\right)}=\left(1;-1;3;-3;7;-7\right)\)

nếu x -4 = 1 => x= 5 (TM)

     x -4  = -1 => x = 3 ( TM)

  x -4    = 3 => x = 4 (TM)

  x -4   = -3 => x = 1 (TM)

   x  - 4 = 7 => x=11 (TM)

  x - 4   = -7 => x = -3 (TM)

KL: x= ....

c) ta có: \(\frac{6x+5}{2x+1}=\frac{6x+3+2}{2x+1}=\frac{3.\left(2x+1\right)+2}{2x+1}=\frac{3.\left(2x+1\right)}{2x+1}+\frac{2}{2x+1}\)

Để B(x) nhận giá trị nguyên

\(\Rightarrow\frac{2}{2x+1}\in z\)

\(\Rightarrow2⋮2x+1\Rightarrow2x+1\inƯ_{\left(2\right)}=\left(2;-2;1;-1\right)\)

nếu 2x + 1 = 2 => 2x = 1 => x =1/2 ( loại)

      2x +1  = -1 => 2x = -2 => x = -1 (TM)

     2x +1   = -2 => 2x = -3 => x = -3/2 ( loại)

    2x +1  = 1 => 2x = 0 => x =0 (TM)

KL: x =...

d) ta có: \(\frac{5-x}{x-2}=\frac{-x+5}{x-2}=\frac{-\left(x-2\right)+3}{x-2}=\frac{-\left(x-2\right)}{x-2}+\frac{3}{x-2}=\left(-1\right)+\frac{3}{x-2}\)

Để E(x) nhận giá trị nguyên

\(\Rightarrow\frac{3}{x-2}\inℤ\)

\(\Rightarrow3⋮x-2\Rightarrow x-2\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x -2 = 3 => x =5 (TM)

    x -2   = -3 => x = -1 (TM)

   x -2    = 1 => x =3 (TM)

   x -2   = -1 => x = 1 (TM)

KL: x= ....

8 tháng 11 2017

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)

Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)

Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)

b) Tương tự

4 tháng 11 2017

Để A là số nguyên thì 9 \(⋮\)\(\sqrt{x}-5\)

\(\Rightarrow\sqrt{x}-5\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)

Lập bảng ta có :

\(\sqrt{x}-5\)1-13-39-9
x3616644196không tồn tại

Vậy x = ....

Biến đổi : \(B=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

Do B là số nguyên nên \(\frac{4}{\sqrt{x}-3}\)phải là số nguyên ( 1 )

\(\Rightarrow4⋮\sqrt{x}-3\)\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Lập bảng ta có :

\(\sqrt{x}-3\)1-12-24-4
x16425149không tồn tại

Vậy x = ....

11 tháng 3 2019

1,b, 2xy - x = y + 5

<=> 4xy - 2x = 2y + 10

<=> 2x(2y - 1) - (2y - 1) = 11

<=> (2x - 1)(2y - 1) = 11

Lập bảng ra làm nốt

11 tháng 3 2019

\(1,c,\frac{1}{x}-3=-\frac{1}{y-2}\)

\(\Leftrightarrow y-2-3x\left(y-2\right)=-x\)

\(\Leftrightarrow y-2-3xy+6x+x=0\)

\(\Leftrightarrow-3xy+7x+y-2=0\)

\(\Leftrightarrow-x\left(3y-7\right)+y-2=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+3y-6=0\)

\(\Leftrightarrow-3x\left(3y-7\right)+\left(3y-7\right)=-1\)

\(\Leftrightarrow\left(1-3x\right)\left(3y-7\right)=-1\)

Lập bảng làm nốt

2 tháng 12 2018

a) Để \(C=\frac{3x+2}{x+1}=\frac{3x+3-1}{x+1}=\frac{3.\left(x+1\right)-1}{x+1}=3-\frac{1}{x+1}\)nguyên

=> 1/x+1 nguyên

=> 1 chia hết cho x + 1

=>...

bn tự làm tiếp nha

b) Để \(D=\frac{2x-1}{x-1}=\frac{2x-2+1}{x-1}=\frac{2.\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)nguyên

=>...