\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

a) Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2x-\sqrt{x}+2\sqrt{x}+2\)

\(=2-x\)

b) Để P=3 thì 2-x=3

hay x=-1(Không thỏa mãn ĐKXĐ)

Vậy: Không có giá trị nào của x để P=3

c) Thay \(x=7+2\sqrt{3}\) vào P, ta được:

\(P=2-7-2\sqrt{3}=-5-2\sqrt{3}\)

Vậy: Khi \(x=7+2\sqrt{3}\) thì \(P=-5-2\sqrt{3}\)

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!

3 tháng 10 2020

a) \(M=\frac{x+1+\sqrt{x}}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)\(=\frac{x+\sqrt{x}+1}{x+1}.\frac{\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b) \(M>3\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}>3\Leftrightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}-3>0\)

\(\Leftrightarrow\frac{x+\sqrt{x}+1-3\left(\sqrt{x}-1\right)}{\sqrt{x}-1}>0\Leftrightarrow\frac{x+\sqrt{x}+1-3\sqrt{x}+3}{\sqrt{x}-1}>0\)\(\Leftrightarrow\frac{x-2\sqrt{x}+4}{\sqrt{x}-1}>0\)

Ta có: \(x-2\sqrt{x}+4=x-2\sqrt{x}+1+3=\left(\sqrt{x}-1\right)+3>0\)\(\Rightarrow\sqrt{x}-1>0\Leftrightarrow\sqrt{x}>1\Leftrightarrow x>1\)

Vậy x>1

3 tháng 10 2020

c) \(M=7\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=7\Rightarrow x+\sqrt{x}+1=7\left(\sqrt{x}-1\right)\)

\(\Leftrightarrow x+\sqrt{x}+1=7\sqrt{x}-7\Leftrightarrow x-6\sqrt{x}+8=0\)\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-2=0\\\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=16\end{cases}\left(tm\right)}}\)

Vậy \(x\in\text{{}4;16\)

19 tháng 8 2021
Bài 1. a) A=7/6
19 tháng 8 2021
b) √x+1 /(√x +2)(√x-1)
25 tháng 7 2019

#)Giải :

1.\(\sqrt{m+2\sqrt{m-1}}-\sqrt{m-2\sqrt{m-1}}\)

\(=\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)

\(=\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)

\(=\sqrt{m-1}+1+\sqrt{m-1}-1\)

\(=2\sqrt{m-1}\)

23 tháng 5 2021

a, Với \(x>0;x\ne1\)

 \(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)

Thay x = 4 => \(\sqrt{x}=2\)vào P ta được : 

\(\frac{1-4}{2}=-\frac{3}{2}\)

c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)

\(\Rightarrow-x< -1\Leftrightarrow x>1\)

23 tháng 6 2018

a) Ta có: \(A=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\left(1-\frac{x-\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{\sqrt{2x}-x-1}{\sqrt{x}-1}\)

\(=\frac{x+2\sqrt{x}+1}{\sqrt{x}+1}.\frac{1-2\sqrt{x}+x}{1-\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}.\frac{\left(1-\sqrt{x}\right)^2}{1-\sqrt{x}}\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)

\(=1^2-\left(\sqrt{x}\right)^2=1-x\).

Vậy \(A=1-x\).

b) Ta có: \(A=1-x\)

Để \(A>0\)\(\Rightarrow1-x>0\Rightarrow1-0>x\Rightarrow1>x\Rightarrow x< 1.\)

Vậy để A > 0 thì x < 1.

Chúc bn hc tốt!