Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tìm đenta
sau đó cho đenta >0
theo hệ thức viets tính đc x1+x2, x1*x2
bình phương 2 vế của pt thỏa mãn thế x1, x2 tương ứng là tìm dc m
mik chỉ nêu ý chình thôi nha mik hơi bận
1) Ta có : \(\Delta'=b'^2-ac=\left(-m\right)^2-1\cdot\left(m-2\right)=m^2-m+2\)
\(=m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt luôn có 2 nghiệm phân biệt
2) Phương trình luôn có 2 nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{m+\sqrt{\Delta'}}{1}=m+\sqrt{\Delta'}\\x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{m-\sqrt{\Delta'}}{1}=m-\sqrt{\Delta'}\end{cases}}\)
Theo đề bài : \(x_1-x_2=m+\sqrt{\Delta'}-m+\sqrt{\Delta'}=2\sqrt{5}\)
\(\Leftrightarrow2\sqrt{\Delta'}=2\sqrt{5}\)
\(\Leftrightarrow\sqrt{\Delta'}=\sqrt{5}\)
\(\Leftrightarrow\Delta'=5\)
\(\Leftrightarrow m^2-m+2=5\)
\(\Leftrightarrow m^2-m-3=0\)
\(\Leftrightarrow m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4}-\frac{13}{4}=0\)
\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2=\frac{13}{4}=\left(\frac{\pm\sqrt{13}}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{13}+1}{2}\\m=\frac{-\sqrt{13}+1}{2}\end{cases}}\)
Vậy....
pt có 2 ng p.b thì \(\Delta\)> 0 <=> 3m2 +2m-1>0 <=> m<-1 hoặc m>1/3
vì a.c=(m-1)2\(\ge\)0 => x1,x2 ko trái dấu nhau.
b) bp 2 ve ta được: x1+x2-2\(\sqrt{x_{ }1\times x2}\)=1. thay vi et => k tồn tại m
a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)
\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)
b) A=\(x^4-13x^2+36\) không làm được nữa.....
a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình
hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)
Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1
b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)
\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)
Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)
\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)
Vậy với \(m=0\)thỏa mãn yêu cầu bài toán
a, Với m=2
\(Pt\Leftrightarrow x^2-8x+9=0\Leftrightarrow\left(x-4\right)^2=7\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=\sqrt{7}\\x-4=-\sqrt{7}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
Vậy pt có 2 nghiệm phân biệt \(\orbr{\begin{cases}x=\sqrt{7}+4\\x=-\sqrt{7}+4\end{cases}}\)
a, đk : x > = 0
Ta có : \(P=\dfrac{x-\sqrt{x}+1}{x+1}=\dfrac{m\sqrt{x}}{x+1}\Rightarrow x-\sqrt{x}+1=m\sqrt{x}\)
\(\Leftrightarrow x-\left(m+1\right)\sqrt{x}+1=0\)
Đặt \(\sqrt{x}=t\)khi đo x = t^2
\(t^2-\left(m+1\right)t+1=0\)
Để pt có 2 nghiệm pb khi
\(\Delta=\left(m+1\right)^2-4=m^2+2m-3>0\)
bổ sung dòng cuối nhé
\(=m^2+2m-3=m^2+2m+1-4=\left(m+1\right)^2-4\)
\(=\left(m-1\right)\left(m+3\right)>0\)
TH1 : \(\left\{{}\begin{matrix}m-1>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\m>-3\end{matrix}\right.\Leftrightarrow m>1\)
TH2 : \(\left\{{}\begin{matrix}m-1< 0\\m+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m< -3\end{matrix}\right.\Leftrightarrow m< -3\)