\(\dfrac{3\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-3}{2-\sqrt{x}}-\dfrac{3\left(3\sqrt{x}-5\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2018

1, ĐKXĐ: x\(\ge0\);x\(\ne1\)

Rút gọn P với \(x\ge0;x\ne1\)ta có

P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)

=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)

=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

15 tháng 11 2018

2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:

P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)

=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)

=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)

\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3

11 tháng 7 2018

\(a.P=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}=\dfrac{\sqrt{x}-3-5+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-8+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\) ( x ≥ 0 ; x # 9 )

\(b.\) \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\text{≤}2\)

\(P_{Max}=2."="\)\(x=0\)

NV
6 tháng 7 2020

ĐKXĐ: ...

\(P=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2}{x}-\frac{2-x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{2\left(\sqrt{x}+1\right)-2+x}{x\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{x\left(\sqrt{x}+1\right)}{\left(x+2\sqrt{x}\right)}=\frac{x}{\sqrt{x}-1}\)

\(x=\frac{2}{2-\sqrt{3}}=\frac{4}{4-2\sqrt{3}}=\left(\frac{2}{\sqrt{3}-1}\right)^2\)

\(\Rightarrow P=\frac{\frac{2}{2-\sqrt{3}}}{\frac{2}{\sqrt{3}-1}-1}=\frac{\frac{2}{2-\sqrt{3}}}{\frac{3-\sqrt{3}}{\sqrt{3}-1}}=\frac{2}{2\sqrt{3}-3}\)

\(\sqrt{P}\) xác định khi \(x>1\)

Khi đó: \(\sqrt{P}=\sqrt{\frac{x}{\sqrt{x}-1}}=\sqrt{\frac{x}{\sqrt{x}-1}-4+4}=\sqrt{\frac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}+4}\ge2\)

\(\sqrt{P}_{min}=2\) khi \(x=4\)

13 tháng 6 2018

đkxđ: x≥0; x≠4

\(A=\dfrac{1}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)

\(=\dfrac{2-\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{2+\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

\(=\dfrac{4-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}=\dfrac{2}{2+\sqrt{x}}\)

+) A = 1/4 <=> \(\dfrac{2}{2+\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow2+\sqrt{x}=8\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)(tm)

Vậy x = 36

13 tháng 6 2018

đkxđ \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

\(A=\dfrac{2+\sqrt{x}+2-\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}\)

\(A=\dfrac{4-2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}\)

\(A=\dfrac{2}{\sqrt{x}+2}\)

để \(A=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=\dfrac{1}{4}\)

\(\Leftrightarrow\sqrt{x}+2=8\)

\(\Leftrightarrow x=36\left(tm\right)\)

vậy tại x=36 thì A=1/4

Sửa đề: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\cdot\dfrac{x-4}{4-\sqrt{x}}\)

a: \(P=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{4-\sqrt{x}}=\dfrac{2x}{4-\sqrt{x}}\)

b: Để P>3 thì P-3>0

\(\Leftrightarrow-\dfrac{2x}{\sqrt{x}-4}-3>0\)

\(\Leftrightarrow\dfrac{-2x-3\sqrt{x}+12}{\sqrt{x}-4}>0\)

\(\Leftrightarrow\dfrac{5\sqrt{x}-12}{\sqrt{x}-4}< 0\)

=>12/5<căn x<4

=>144/25<x<16

3 tháng 9 2018

\(ĐKXĐ:x\ne\pm1\)

\(a.D=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\left(\dfrac{2}{x^2-1}-\dfrac{x}{x-1}+\dfrac{1}{x+1}\right)=\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\dfrac{2-x\left(x+1\right)+x-1}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x}{\left(x+1\right)\left(x-1\right)}.\dfrac{\left(x+1\right)\left(x-1\right)}{1-x^2}=\dfrac{4x}{1-x^2}\)\(b.x=\sqrt{3+\sqrt{8}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{2}+1\left(TM\right)\)

Khi đó : \(D=\dfrac{4\left(\sqrt{2}+1\right)}{1-3-2\sqrt{2}}=\dfrac{4\left(\sqrt{2}+1\right)}{-2\left(1+\sqrt{2}\right)}=-2\)

\(c.D=\dfrac{8}{3}\Leftrightarrow\dfrac{4x}{1-x^2}=\dfrac{8}{3}\)

\(\Leftrightarrow\dfrac{12x-8\left(1-x^2\right)}{3\left(1-x^2\right)}=0\)

\(\Leftrightarrow8x^2+12x-8=0\)

\(\Leftrightarrow2x^2-x+4x-2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\left(TM\right)\\x=-2\left(TM\right)\end{matrix}\right.\)

KL.........