Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án:
Giải thích các bước giải:
3^(n+2)-2^(n+2)+3^n-2^n
=3^n.9+3^n-2^n.4-2^n
=3^n(9+1)-2^n(4+1)
=3^n.10-2^n.5
=3^n.10-2^(n-1).10
=10(3^n-2^(n-1))
Bài làm:
Ta có: \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=3^n\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\)
=> đpcm
3n + 27 + 3n + 3 + 2n + 8 + 2n + 4 = (3n + 3n + 2n + 2n ) + 42 chia het cho 6. Suy ra 3n + 3n +2n +2n chia het cho 6
Vay voi moi so nguyen duong n thi 3n+3+3n+1+2n+3+2n+2 chia hết cho 6
\(3^{n+3}+2^{n+3}-3^{n+2}+2^{n+2}=27.3^n-9.3^n+8.2^n+4.2^n\)
\(=3^n\left(27-9\right)+2^n\left(8+4\right)\)
\(=6.3^{n+1}+6.2^{n+1}\)
\(=6\left(3^{n+1}+2^{n+1}\right)⋮6\left(đpcm\right)\)
Ta có:3n+2-2n+2+3n -2n=3n.9-2n-1.8+3n-2n-1.2=3n.(9+1)-2n-1.(8+2)=3n.10-2n.10
=(3n-2n).10 chia hết cho 10
=>3n+2-2n+2+3n -2n chia hết cho 10
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6