Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=....
<=>B=x^3+y^3+3xy(x+y)-2(x^2+y^2+2xy)+3(x+y)+10
<=>B=(x+y)^3-2(x+y)^2+3(x+y)+10
tại x+y=5 thay vao B ta đc:
B=5^3-2.5^2+3.5+10
B=100
P = 3x2 - 2x + 3y2 - 2y + 6xy - 100
= 3( x2 + 2xy + y2 ) - 2( x + y ) - 100
= 3( x + y )2 - 2( x + y ) - 100
Với x + y = 5
=> P = 3.52 - 2.5 - 100 = 75 - 10 - 100 = -35
Q = x3 + y3 - 2x2 - 2y2 + 3xy( x + y ) - 4xy + 3( x + y ) + 10
= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3( x + y ) + 10
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 2x2 + 4xy + 2y2 ) + 3( x + y )
= ( x + y )3 - 2( x2 + 2xy + y2 ) + 3( x + y ) + 10
= ( x + y )3 - 2( x + y )2 + 3( x + y ) + 10
Với x + y = 5
=> Q = 53 - 2.52 + 3.5 + 10 = 100
a. \(P=3x^2-2x+3y^2-2y+6xy-100\)
\(\Leftrightarrow P=\left(3x^2+6xy+3y^2\right)-\left(2x+2y\right)-100\)
\(\Leftrightarrow P=3\left(x+y\right)^2-2\left(x+y\right)-100\)
\(\Leftrightarrow P=3.5^2-2.5-100\)
\(\Leftrightarrow P=-35\)
b. \(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=5^3-2.5^2+3.5+10\)
\(\Leftrightarrow Q=100\)
a)A=3(x2+2xy+y2)-2(x+y)-100=3(x+y)2-2.5-100=3.52-110=-35
b)B=x3+3x2y+3xy2+y3-2(x2+2xy+y2)+3(x+y)+10=(x+y)3-2(x+y)2+3.5+10=53-2.52+25=100
(l ike nha)
Viết lại :
a) \(M=\left(x+y\right)^3+2\left(x+y\right)^2\)
b) \(N=\left(x-y\right)^3-\left(x-y\right)^2\)
a) M=(x+y)3+2x2+4xy+2y2
M=73+(2x+2y)2=4(x+y)2=73+4.72=343+196=539
b)N=(x-y)3-x2+2xy-y2
N=-53-(x2-2xy+y2)=-125-(x-y)2=-125-(-5)2=-150
Bài làm :
Ta có :
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\):
\(Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)
\(Q=\left(x^3+y^3+3x^2y+3xy^2\right)-\left(2x^2+2y^2+4xy\right)+3\left(x+y\right)+10\)
\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x+y=5 vào biểu thức trên ; ta được :
\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy Q=100
\(Q=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=x^3+y^3-2x^2-2y^2+3x^2y+3xy^2-4xy+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(2x^2+4xy+2y^2\right)+3\left(x+y\right)+10\)
\(\Leftrightarrow Q=\left(x+y\right)^3-2\left(x+y\right)^2+3\left(x+y\right)+10\)
Thay x + y = 5 vào pt ta được :
\(Q=5^3-2.5^2+3.5+10=125-50+15+10=100\)
Vậy Q = 100 <=> x + y = 5