K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2020

A B C D E I H 1 2 1 2 1 1 2 1

a) Từ I kẻ IH vuông góc với BC

Xét t/giác BID và BIH 

có: \(\widehat{B_1}=\widehat{B_2}\)(gt)

 BI: chung

 \(\widehat{BDI}=\widehat{BHI}=90^0\)

=> t/giác BID = t/giác BID (ch.gn)

=> DI = IH (2 cạnh t/ứng) (1)

CMTT: t/giác ECI = t/giác HCI (ch - gn)

=> EI = IH (2)

Từ (1) và (2) => DI = IE

Nối A và I

TA có: AH // IE (vì cùng vuông góc với AC) => \(\widehat{DAI}=\widehat{AIE}\)(slt)

Xét t/giác DAI và t/giác EIA

có: IA : chung

\(\widehat{ADI}=\widehat{IEA}=90^0\)(gt)

 \(\widehat{DAI}=\widehat{AIE}\)(cmt)

=> t/goác DAI = t/giác EIA (ch - gn)

=> DI = EA; AD = EI (các cặp cạnh tương ứng)

mà DI = EI (cmt) 

=> AE = AD (đpcm)

b) Xét t/giác ABC vuông tại A, ta có:

BC2 = AB2  + AC2 (định lí Pi - ta - go)

=> BC2 = 62 + 82 = 100

=> BC = 10 (cm)

Ta có: t/giác BID = t/giác BIH (cmt) => BD = BH (2 cạnh t/ứng)

t/giác CIE = t/giác CIH (cmt) => CH = EC (2 cạnh t/ứng)

=> BD + EC = DH + HC = BC = 10 cm

Ta lại có: AB + AC =  BD + AD + AE + EC = (BD + EC) + 2AD = 6 + 8

=> 2AD + 10 = 14

=> 2AD = 4 => AD = AE = 2 cm

28 tháng 6 2020

A B C I D E K

a) Vì I là giao điểm của phân giác \(\widehat{B}\)và \(\widehat{C}\)

=> AI là phân giác \(\widehat{A}\)

=> ID=IE (1)

\(\Delta ADI\)và \(\Delta AEI\)vuông cân

=> ID=AD; IE=AE (2)

Từ (1)(2) => ED=AE (đpcm)

b) Hạ IK _|_ BC; ID _|_ AB; IE _|_ AC

=> BD=BK; CK=CE; AD=AE

\(\Delta ABC\)vuông tại A có AB=6cm; AC=8cm. Áp dụng định lý Pytago ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=\sqrt{36+64}=\sqrt{100}=10\left(cm\right)\)

Đặt AD=x => BK=6-x; CK=8-c

=> 6-x+8-x=10

=> x=2

Vậy AD=2cm

31 tháng 1 2016

Em mới học lớp 5 thôi!

29 tháng 5 2017

A B C D E F I

a) AI là tai phân giác của góc A nên ID = IE. (1)

Các tam giác vuông ADI, AEI có \(\widehat{DAI}=\widehat{EAI}=45^o\) nên là tam giác vuông cân, do đó AD = ID, AE = IE. (2)

Từ (1) và (2) suy ra AD = AE.

b) Áp dụng định lí Py-ta-go trong tam giác vuông ABC:

BC2 = AB2 + AC2 = 62 + 82

BC2 = 36 + 64 = 100

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\).

Kẻ IF \(\perp\) BC

Xét hai tam giác vuông IBD và IBF có:

BI: cạnh huyền chung

\(\widehat{IBD}=\widehat{IBF}\) (gt)

Vậy: \(\Delta IBD=\Delta IBF\left(ch-gn\right)\)

\(\Rightarrow\) BD = BF (hai cạnh tương ứng)

Xét hai tam giác vuông ICE và ICF có:

CI: cạnh huyền chung

\(\widehat{ICE}=\widehat{ICF}\left(gt\right)\)

Vậy: \(\Delta ICE=\Delta ICF\left(ch-gn\right)\)

Suy ra: CE = CF (hai cạnh tương ứng)

Ta có: AB + AC - BC = AD + DB + AE + EC - BF - CF.

Do BD = BF, CE = CF nên:

AB + AC - BC = AD + AE

\(\Rightarrow\) 6 + 8 - 10 = AD + AE

\(\Rightarrow\) AD + AE = 4 (cm).

Theo câu a) ta có AD = AE nên AD = AE = 2cm.

1 tháng 2 2018

Hình tự vẽ nhé!!!leuleu

a) AI là tai phân giác của góc A nên ID = IE. (1)

Các tam giác vuông ADI, AEI có ˆDAI=ˆEAI=45oDAI^=EAI^=45o nên là tam giác vuông cân, do đó AD = ID, AE = IE. (2)

Từ (1) và (2) suy ra AD = AE.

b) Áp dụng định lí Py-ta-go trong tam giác vuông ABC:

BC2 = AB2 + AC2 = 62 + 82

BC2 = 36 + 64 = 100

⇒BC=√100=10(cm)⇒BC=100=10(cm).

Kẻ IF ⊥⊥ BC

Xét hai tam giác vuông IBD và IBF có:

BI: cạnh huyền chung

ˆIBD=ˆIBFIBD^=IBF^ (gt)

Vậy: ΔIBD=ΔIBF(ch−gn)ΔIBD=ΔIBF(ch−gn)

⇒⇒ BD = BF (hai cạnh tương ứng)

Xét hai tam giác vuông ICE và ICF có:

CI: cạnh huyền chung

ˆICE=ˆICF(gt)ICE^=ICF^(gt)

Vậy: ΔICE=ΔICF(ch−gn)ΔICE=ΔICF(ch−gn)

Suy ra: CE = CF (hai cạnh tương ứng)

Ta có: AB + AC - BC = AD + DB + AE + EC - BF - CF.

Do BD = BF, CE = CF nên:

AB + AC - BC = AD + AE

⇒⇒ 6 + 8 - 10 = AD + AE

⇒⇒ AD + AE = 4 (cm).

Theo câu a) ta có AD = AE nên AD = AE = 2cm.

1 tháng 1 2016

ko giai dc nhieu qua voi lại mk ko gioi hih

17 tháng 4 2017

Tam giác vuông BAC có ∠A = 90o

Áp dụng định lí Pitago, ta có:

BC2 = AB2 + AC2

= 62 + 82 = 36 + 64 = 100

⇒ BC = 10 (cm)

Kẻ IF ⊥ BC

Xét hai tam giác vuông IDB và IFB, ta có:

∠(IDB) = ∠(IFB) = 90o

∠(DBI) = ∠(FBI) (gt)

cạnh huyền BI chung

Suy ra: ΔIDB = ΔIFB (cạnh huyền, góc nhọn)

Suy ra: DB = FB (hai cạnh tương ứng) (4)

Xét hai tam giác vuông IEC và IFC, ta có:

∠(IEC) = ∠(IFC) = 90o

∠(ECI) = ∠(FCI) (gt)

cạnh huyền CI chung

Suy ra: ΔIEC = ΔIFC (cạnh huyền, góc nhọn)

Suy ra: CE = CF (hai cạnh tương ứng) (5)

Mà: AD + AE = AB - DB + AC - CE

Suy ra: AD + AE = AB + AC - (DB + CE) (6)

Từ (4), (5) và (6) suy ra: AD + AE = AB + AC - (FB + FC)

= AB + AC - BC = 6 + 8 - 10 = 4 (cm)

Mà AD = AE (chứng minh trên)

Nên AD = AE = 4 : 2 = 2(cm).