K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

A B C M K D E x y

trên tia đối của MA lấy K : AM = MK

a.  xét tam giác AMC và tam giác KMB có : MA = MK (cách vẽ)

BM = MC do M là trung điểm của BC (gt)

^AMC = ^KMB (đối đỉnh)

=> BK = AC (1)

    ^CAM = ^MKB mà 2 góc này slt

=> BK // AC 

=> ^BAC + ^ABK = 180 (tcp)              (2)

có : ^DAB + ^ABC + ^EAC + ^DAE = 360 

^DAB = ^EAC = 90

=> ^DAE + ^BAC = 180 và (2)

=> ^DAE = ^ABK 

xét tam giác ABK và tam giác DAE có : AD = AB (gt)

AE = AC (Gt) và (1) => AE = BK

=> tam giác ABK = tam giác DAE (C-g-c)

=> DE = AK (Đn)

AM = AK/2 do AM = MK (cách vẽ)

=> AM = DE/2

b, gọi AM cắt DE tại H 

có : ^DAH + ^DAB + ^BAK = 180 

^DAB = 90

=> ^DAH + ^BAK = 90 

^BAK = ^HDA do tam giác DAE = tam giác ABK (câu a)

=> ^HDA + ^DAH = 90 xét tam giác DHA 

=> ^DHA = 90

=> AM _|_ DE

22 tháng 11 2017

Bạn tham khảo nhé!

Câu hỏi của Huyền Anh Kute| Học trực tuyến

26 tháng 6 2019

Câu này của nâng cao lớp 7 bạn ạ

1 tháng 1 2020

x H y E D A B M C K

a, Để chứng tỏ DE = 2AM,ta tạo ra đoạn thẳng gấp đôi AM bằng cách lấy K trên tia đối của tia MA sao cho MK = MA,ta sẽ chứng minh AK = DE

Dễ thấy AC = BK, AC // BK . Xét \(\Delta ABK\)và \(\Delta DAE\), ta có :

  AB = AD gt

 BK = AE cùng bằng AC 

  \(\widehat{ABK}=\widehat{DAE}\)cùng bù với góc BAC

Do đó \(\Delta ABK=\Delta DAE(c.g.c)\)

\(\Rightarrow AK=DE\)hai cạnh tương ứng

Vậy AM = DE/2 

b, Gọi H là giao điểm của MA và DE.Ta có \(\widehat{BAK}+\widehat{DAH}=90^0\)nên \(\widehat{D}+\widehat{DAH}=90^0\), do đó góc AHD = 900

30 tháng 12 2017

a) Kẻ MN là tia đối của tia MA và MN = MA

Kéo dài AM cắt DE tại H

Xét ΔΔAMC và ΔΔNMB có:

AM = NM (cho ở trên)

AMCˆAMC^ = NMBˆNMB^ (đối đỉnh)

MC = MB (suy từ gt)

=> ΔΔAMC = ΔΔNMB (c.g.c)

=> ACMˆACM^ = NBMˆNBM^ (2 góc t/ư)

mà 2 góc này ở vị trí so le trong nên AC // BN

=> BACˆBAC^ + ABNˆABN^ = 180o (trong cùng phía) (3)

Vì DA ⊥⊥ AB nên DABˆDAB^ = 90o;

EA ⊥⊥ AC nên EACˆEAC^ = 90o

Ta có: DAHˆDAH^ + DABˆDAB^ + BANˆBAN^ = 180o

=> DAHˆDAH^ + 90o + BANˆBAN^ = 180o

=> DAHˆDAH^ + BANˆBAN^ = 90o (1)

Lại có: EAHˆEAH^ + EACˆEAC^ + CANˆCAN^ = 180o

=> EAHˆEAH^ + 90o + CANˆCAN^ = 180o

=> EAHˆEAH^ + CANˆCAN^ = 90o (2)

Cộng vế (1) và (2) ta đc:

DAHˆDAH^ + BANˆBAN^ + EAHˆEAH^ + CANˆCAN^ = 90o + 90o

=> (DAHˆDAH^ + EAHˆEAH^) +(BANˆBAN^ + CANˆCAN^) = 180o

=> DAEˆDAE^ + BACˆBAC^ = 180o (4)

Từ (3) và (4) suy ra:

BACˆBAC^ + ABNˆABN^ = DAEˆDAE^ + BACˆBAC^

=> ABNˆABN^ = DAEˆDAE^

Do ΔΔAMC = ΔΔNMB (c/m trên)

=> AC = NB (2 cạnh t/ư)

mà AC = AE (gt)

=> NB = AE

Xét ΔΔABN và ΔΔDAE có:

AB = DA (gt)

ABNˆABN^ = DAEˆDAE^ (c/m trên)

NB = AE (c/m trên)

=> ΔΔABN = ΔΔDAE (c.g.c)

=> AN = DE 92 cạnh t/ư)

mà AM = 1212 AN nên AM = 1212 DE.

25 tháng 1 2018

cộng là gì đó bạn ?