Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đa số những người hỏi câu hỏi về hình học đều muốn mọi người vẽ hình hộ
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
( Hình mình hk vẽ nha bạn, thông cảm -.- )
a,
*Xét tam giác MAB và tam giác MDC có:
+ MB = MC ( vì M là trung điểm của BC )
+ Góc BMA = góc DMC ( 2 góc đối đỉnh )
+ AM = AD ( gt )
\(\Rightarrow\)Tam giác MAB = tam giác MDC (c.g.c)
* Vì tam giác ABC vuông tại A \(\Rightarrow\)góc ABC + góc ACB = 90\(^0\)
Mà góc ABC = góc MCD ( vì tam giác MAB = tam giác MDC )
\(\Rightarrow\)Góc ACB + góc MCD = 90 \(^0\)
\(\Rightarrow\)Góc DCA = 90\(^0\)
\(\Rightarrow\)AC vuông góc CD
b, Xét tam giác BAN và tam giác DCN có
+ BA = DC ( vì tam giác MAB = tam giác MDC )
+ Góc BAC = góc DCA = 90\(^0\)
+ AN = NC ( vì N là trung điểm của AC )
\(\Rightarrow\)Tam giác BAN = tam giác DCN ( c.g.c )
\(\Rightarrow\)BN = DN ( 2 cạnh tương ứng )
k mình nhaaaaaaaaaaaaaaaaaaa
a) xét tg ABM & tg DCM có
MB=MC (vì M là trung điểm BC)
AMB^ =DMC^(2 GÓC ĐỐI ĐỈNH)
MA =MD (GT)
=) tg ABM=tg DCM(c.g.c)
vậy.......
b) Vì tg ABC =TG DCM nên ABM^ =DCM^ (2 góc tương ứng)
Mà ABM^ & DCM^ ở vị trí so le trong nên AB//DC
vậy.....
c) bó tay
Bạn o0o đồ khùng o0o làm đúng rồi
Bạn Ngọc My Lovely làm theo cách bạn ấy nha
Ai thấy mình nói đúng thì nha
\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)
\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)
Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)
\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)
Mà ME là trung tuyến nên cũng là đường cao
Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)
Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)
Vậy M,E,F thẳng hàng
A B C M D
a) Xét tam giác MAB và tam giác MDC có:
MA=MD (gt)
MB=MC( M là trung điểm BC)
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh)
=> Tam giác MAB = tam giác MDC
b)
Tam giác MAB = tam giác MDC => \(\widehat{BAM}=\widehat{CDM}\)
Mà hai góc này ở vị trí so le trong
=> AB//CD
c) Ta có AB vuông AC
mag CD // AB
=> CD vuông AC
=> góc ACD bằng 90 độ
Trả lời:
P/s: Mk chỉ làm đc nhiu đây!!!~^-^
a) Xét tg MAB và tg MDC có:
AM = DM (gt)
MB = MC (suy từ gt)
gAMB = gDMC (đđ)
=> tgMAB = tgMDC (c.g.c)
b) Đề nghị sửa thành: AB = CD và AB // CD.
Vì tgMAB = tgMDC (câu a)
=> AB = CD (2 cạnh tt/ư)
và ABMˆABM^ = DCMˆDCM^( 2 góc t/ư)
mà 2 góc này ở vị trí so l trong nên AB // CD.
c) Nối B với D.
Xét tgAMC và tgDMB có:
AM = DM (gt)
gAMC = gDMB (đđ)
CM = BM (suy từ gt)
=> tgAMC = tgDMB (c.g.c)
=> AC = DB (2 canjht /ư)
Xét tgBAC và tgCDB có:
BA = CD (câu b)
BC chung
AC = DB (c/m trên)
=> tgBAC = tgCDB (c.c.c)
`~Học tốt!~