Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b}{b}\)=\(\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1\)
1 là ps tối giản, \(\frac{a}{b}\)à ps chưa tối giản
suy ra \(\frac{a+b}{b}\) là ps tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản
a) Vì \(\frac{a}{b}\)là 1 ps chưa tối giản
=> Ta có công thức: \(\hept{\begin{cases}a=kd\\b=hd\end{cases}\left(\left(a;b\right);\left(k;h\right)=d=1\right)}\)
=> \(\frac{a}{a-b}=\frac{kd}{kd-hd}=\frac{kd}{\left(k-h\right)d}\)chưa là phân số tối giản ( có thể rút gọn dc nx)
b) \(\frac{2a}{a-2b}=\frac{2kd}{kd-2hd}=\frac{2kd}{\left(k-2h\right)d}\)chưa là phân số tối giản (có thể rút gọn dc nx)
\(\frac{a}{b}\) là phân số chưa tối giản
\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)
\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản
=> đpcm
Giả sử \(\frac{a+b}{b}\) không là phân số tối giản
Gọi ƯCLN của a+b;a là d ( d khác 1 )
Khi đó:\(a+b⋮d;b⋮d\)
\(\Rightarrow\left(a+b\right)-b⋮d\)
\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )
Vậy ta có đpcm
Gọi ƯCLN(a,b)=d (d khác 0,-1,1)
=>\(a⋮d\)
\(b⋮d\)
Sử dụng tính chất chia hết của 1 tổng, ta được:
\(\left(a+b\right)⋮d\)
Mà \(b⋮d\)
nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.
Vậy phân số trên chưa tối giản.