Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = x8 - 101x7 + 101x6 - 101x5 + ... + 101x2 - 101x + 25
f(x) = x8 - ( 100x7 + x7 ) + ( 100x6 + x6 ) - ( 100x5 + x5 ) + ... + ( 100x2 + x2 ) - ( 100x + x ) + 25
f(x) = x7 . ( x - 100 ) - x6 . ( x - 100 ) - x5 . ( x - 100 ) - x4 . ( x - 100 ) + ... + x . ( 100 - x ) - ( x - 25 )
nên f(100) = - ( 100 - 25 ) = -75
f(x) = x8 - 101x7+101x6-101x5+...+101x2 -101x +25
f(x) = x8 - (100x7 + x7) + (100x6 + x6) - (100x5 + x5) +....+ (100x2 + x2) - (100x + x) + 25
f(x) = x8 - 100x7 - x7 + 100x6 + x6 - 100x5 - x5 +...+ 100x2 + x2 - 100x - x + 25
f(x) = x7(x - 100) - x6(x - 100) + x5(x - 100) - x4(x - 100) +...+ x(x - 100) - (x - 25)
f(100) = 1007(100 - 100) - 1006(100 - 100) + 1005(100 - 100) - 1004(100 - 100) +...+ 100(100 - 100) - (100 - 25)
f(100) = 0 - 0 + 0 - 0 +...+ 0 - 75
f(100) = -75
\(f\left(100\right)\Rightarrow x=100\)
\(\Rightarrow x+1=101\)
Thay x + 1 = 101 ta được:
\(f\left(100\right)-x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-\left(x+1\right)x^5+...+\left(x+1\right)x^2-\left(x+1\right)x+25\)
\(=x^8-\left(x^8+x^7\right)+\left(x^7+x^6\right)-\left(x^6+x^5\right)+...+\left(x^3+x^2\right)-\left(x^2+x\right)+25\)
\(=x^8-x^8-x^7+x^7+x^6-x^6-x^5+...+x^3+x^2-x^2-x+25\)
\(=-x+25\)
\(=-100+25\)
\(=-75\)
Vì x=100 nên x+1=101
Thay 101=x+1 vào f(x) ta có:
f(x) = x8 - (x+1)x7 + (x+1)x6 -(x+1)x5 + ... + (x+1)x2 -(x+1)x +25
= x8 -x8 - x7 + x7 +x6-x6-x5 + ... + x3 + x2 - x2 -x+25
= x+25
=> f(100) = 100+25=125
Vậy f(100) = 125
Cách2:
f(100) = 1008 - 101.1007 + 101.1006-101.1005+...+101.1002-101.100+25
=1008-(100+1)1007+(100+1)1006-(100+1)1005+...+(100+1)1002-(100+1)100+25
=1008-1008-1007+1007+1006-1006+1005+...+1003+100 -1002-100+25
=-100+25=75
Vậy f(100)=75
1. cho f(x)=x8-101x7+101x6-101x5+...+101x2-101x+25. tính f(100)
f(x)=x8-101x7+101x6-101x5+...+101x2-101x+25
=x8-(100+1)x7+(100+1)x6-(100+1)x5+...+(100+1)x2-(100+1)x+25
f(100 ) hay x= 100
Thay 100 = x ,có :
=x8-(x+1)x7+(x+1)x6-(x+1)x5+...+(x+1)x2-(x+1)x+25
= x8 - x8 - x7+ x7 + x6 - x6 - x5 + x5 + .......................+ x3 + x2 - x2 + x + 25
= x+ 25
f(100 0 = 100 + 25 = 125
Vậy f(100 ) =125
x=100
nên x+1=101
\(f\left(x\right)=x^8-x^7\left(x+1\right)+x^6\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+25\)
\(=x^8-x^8-x^7+x^7+x^6-x^6+...+x^3+x^2-x^2-x+25\)
=25-x=-75
Có x = 100
<=> x + 1 = 101
Ta có :
\(f\left(x\right)=x^8-101.x^7+101.x^6-101.x^5+......+101x^2-101x+25\)
\(f\left(x\right)=x^8-\left(x+1\right).x^7+\left(x+1\right).x^6-\left(x+1\right).x^5+....+\left(x+1\right).x^2-\left(x+1\right).x+25\)
\(f\left(x\right)=x^8-x^8-x^7+x^7+x^6-x^6-x^5+.....+x^3-x^2+x^2+x+25\)
\(f\left(x\right)=x+25\)
\(f\left(100\right)=100+25=125\)