K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

MÌNH CẦN GẤP!! CÁC BẠN GIÚP MÌNH NHA!!! 

0
Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BCa) Chứng minh : Tứ giác EHMN là hình thang cânb) Chứng minh: HE ⊥ HNc) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoid) Chứng minh: AM, EN,BF và KC đồng quyBài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE...
Đọc tiếp

Bài 1: Cho △ ABC vuông ở A (AB<AC). Kẻ đường cao AH. Gọi E, N, M theo thứ tự là trung điểm của AB, AC và BC

a) Chứng minh : Tứ giác EHMN là hình thang cân

b) Chứng minh: HE ⊥ HN

c) Từ A kẻ đường thẳng song song với BC cắt tia ME, MN theo thứ tự ở K và F. Chứng minh: Tứ giác AMBK là hình thoi

d) Chứng minh: AM, EN,BF và KC đồng quy

Bài 2: Cho hình bình hành ABCD tâm O. Trên đoạn OD lấy điểm E.Kẻ CF // AE (F ϵ BD)

a) Chứng minh: Tứ giác AFCE là hình bình hành

b) Cho AF cắt BC tại M, CE cắt AD tại N. Chứng minh: M,O,N thẳng hàng

c) Lấy K đối xứng C qua E. Xác định vị trí của E trên OD để tứ giác AKDO là hình bình hành

d) Lấy I đối xứng với A qua D, lấy H đối xứng A qua B. Hình Bình hành ABCD phải có thêm điều kiện gì để I và H đối xứng với nhau qua đường thẳng AC?

0
8 tháng 12 2016

AE = CF (gt)

mà AE // CF (ABCD là hình chữ nhật)

=> AECF là hình bình hành

=> FA // CE

=> AFD = ECF (2 góc đồng vị)

mà ECF = CEB (2 góc so le trong, AB // CD)

=> AFD = CEB (1)

AB = CD (ABCD là hình chữ nhật)

mà AE = CF (gt)

=> AB - AE = CD - CF

=> EB = DF (2)

Xét tam giác NEB và tam giác MFD có:

NEB = MFD (theo 1)

EB = FD (theo 2)

EBN = FDM (2 góc so le trong, AB // CD)

=> Tam giác NEB = Tam giác MFD (g.c.g)

=> BN = DM (2 cạnh tương ứng)

O là trung điểm của BD (3)

=> O là trung điểm của AC (ACBD là hình chữ nhật) (4)

=> O là trung điểm của EF (AECF là hình bình hành) (5)

AEI = ABD (2 góc so le trong, EI // BD)

CFK = CDB (2 góc so le trong, FK // BD)

mà ABD = CBD (2 góc so le trong, AB // CD)

=> AEI = CFK (6)

EI // BD (gt)

FK // DB (gt)

=> EI // FK (7)

Xét tam giác EAI và tam giác FCK có:

IEA = KFC (theo 6)

EA = FC (gt)

EAI = FCK (= 900)

=> Tam giác EAI = Tam giác FCK (g.c.g)

=> EI = FK (2 cạnh tương ứng)

mà EI // FK (theo 7)

=> EIFK là hình bình hành

mà O là trung điểm của EF (theo 5)

=> O là trung điểm của IK (8)

Từ (3), (4), (5) và (8)

=> AC, EF, IK đồng quy tại O là trung điểm của BD

O là trung điểm của AC và BD

=> OA = OC = \(\frac{AC}{2}\)

OB = OD = \(\frac{BD}{2}\)

mà AC = BD (ABCD là hình chữ nhật)

=> OA = OD = OB = OC

=> Tam giác OAD cân tại O

mà AOD = 600

=> Tam giác OAD đều

=> AD = OA = OD

mà AD = 1 cm

AD = BC (ABCD là hình chữ nhật)

=> OA = OD = OC = OB = BC = 1 cm

=> AC = 2OA = 2 . 1 = 2 cm

Xét tam giác BAC vuông tại B có:

\(AC^2=BA^2+BC^2\) (định lý Pytago)

\(AB^2=AC^2-BC^2\)

\(=2^2-1^2\)

\(=4-1\)

= 3

\(AB=\sqrt{3}\)

\(S_{ABCD}=AB\times BC=\sqrt{3}\times1=\sqrt{3}\left(cm^2\right)\)

8 tháng 12 2016

@@ my god oaoa

31 tháng 10 2020

A N B F C M D E O

a) Ta có : tứ giác ABCD là hình bình hành (gt)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của AC (1)

và O là trung điểm của BD

\(\Rightarrow OB=OD\)

mà \(DE=BF\left(gt\right)\)

\(\Rightarrow OB-BF=OD-DE\)

\(\Rightarrow OF=OE\)

\(\Rightarrow\)O là trung điểm của EF (2)

Từ (1) và (2) \(\Rightarrow\)tứ giác AECF là hinh bình hành

b) Ta có : tứ giác AECF là hinh bình hành (cma)

\(\Rightarrow AE//CF\)

\(\Rightarrow AM//CN\left(3\right)\)

Ta có : tứ giác ABCD là hinh bình hành (gt)

\(\Rightarrow AB//CD\)

\(\Rightarrow AN//CM\left(4\right)\)

TỪ (3) và (4) \(\Rightarrow\)tứ giác ANCM là hình bình hành 

\(\Rightarrow AM=CN\)

c) Ta có : tứ giác ANMC là hinh bình hành (cmb)

\(\Rightarrow\)2 đường chéo cắt nhau tại trung điểm của mỗi đường

\(\Rightarrow\)O là trung điểm của NM

và O là trung điểm của AC

mà O là trung điểm của BD

\(\Rightarrow\)AC , NM , DB cùng đi qua 1 điểm