Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) C/m tg ABCO nội tiếp:
+) Ta có: góc ACO = 90•( vì AC là tiếp tuyến đg tròn (O))
góc ABO = 90•( vì AB là tiếp tuyến đg tròn (O))
+) Xét tg ABOC có: góc ACO+ góc ABO=90•+90•=180•
Mà 2 góc ở vị trí đối nhau
=> tg ABOC nội tiếp đg tròn(dhnb)
b) C/m: CD// AO:
+) Vì AB và AC là 2 tiếp tuyến cắt nhau tại A(gt) => AO là đg pg của góc COB( t/c 2 tiếp tuyến cắt nhau)
=> AO là pg của tam giác COB
Mà tam giác COB cân tại O( OB=OC=R)
=> OA là đg cao của tam giác COB( t/c tam giác cân)
=> OA vuông góc vs CB( t/c) (1)
+) Xét (O) ta có:
BD là đg kính( gt)
góc BCD là góc nội tiếp chắn cung BD
=> góc BCD= 90• ( t/c góc nội tiếp chắn nửa đg tròn)
=> CD vuông góc vs CB(t/c) (2)
Từ(1) và (2) suy ra: CD// OA( từ vuông góc đến song song).
mk chưa ra câu c nên xin lỗi bn nhiều nhé....
a) Ta có: \(\widehat{OBA}+\widehat{OCA}=90^o\)
=> OBAC nội tiếp
b) Xét tam giác AEB và tam giác ABD
Có: \(\widehat{BAD}\)chung
\(\widehat{ADB}=\widehat{ABE}=\frac{1}{2}sđ\widebat{BE}\)
=> Tam giác AEB đồng dạng tam giác ABD (g.g)
=> \(\frac{AE}{AB}=\frac{AB}{AD}\)=>AB2=AE.AD (đpcm)
c) Kẽ BE cắt AC tại S
CE cắt AB tại P
Ta có:\(\hept{\begin{cases}\widehat{BEP}=\widehat{CES}=\frac{1}{2}sđ\widebat{BC}\\\widehat{AEP}=\widehat{CED}=\frac{1}{2}sđ\widebat{CD}\end{cases}}\)(1)
Mặt khác: \(\hept{\begin{cases}\widehat{BDC}=\widehat{BCA}=\frac{1}{2}sđ\widebat{BC}\\\widehat{DBC}=\widehat{BCA}\left(slt\right)\end{cases}}\)
=> \(\widehat{BDC}=\widehat{DBC}\)
=> Tam giác BDC cân tại C
=> CD=BC
=> \(\widebat{CD}=\widebat{BC}\)(2)
Từ (1),(2) => \(\widehat{BEP}=\widehat{AEP}\)
=> Tia đổi của tia EC là tia phân giác của góc BEA