K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=9,6(cm)

30 tháng 12 2019

A B C H

a ) Ta có : \(20^2=12^2+16^2\Leftrightarrow BC^2=AB^2+AC^2\)

Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông

b ) 

Áp dụng hệ thức lượng vào tam giác vuông ABC ta có :
\(AB.AC=AH.BC\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\left(cm\right)\)

c ) Ta có :

\(AB.cosB+AC.cosC=\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)

\(=\frac{AC^2+AB^2}{BC}=\frac{BC^2}{BC}=BC=20\left(cm\right)\)

Chúc bạn học tốt !!!

10 tháng 9 2018

a)\(12^2+16^2=20^2\)(144+256=400)

\(\Rightarrow AB^2+AC^2=BC^2\)(định lý pytago)

\(\Rightarrow\Delta ABC\)vuông tại A

b)Xét tg ABC vuông tại A có đcao AH(cmt)

Ta có:AB.AC=BC.AH(Hệ thức lượng)

          12.16=20.AH

          192=20.AH

           AH=192:20=9.6

c)cosB=AB/BC,cosC=AC/BC

\(\Rightarrow\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)

\(\Rightarrow\frac{AB^2}{BC}+\frac{AC^2}{BC}=\frac{\left(AB^2+AC^2\right)}{BC}\)

\(\Rightarrow\frac{BC^2}{BC}=\frac{20^2}{20}=20\)

\(\Rightarrow AB.cosB+AC.cosC=20\)

15 tháng 8 2017

a) Ta có \(AB^2+AC^2=400cm\); BC2=400cm=> \(\Delta ABC\) vuông tại A

Kẻ AH\(\perp\)BC

AH.BC=AB.AC=> AH.20=12.16=>AH=9,6cm

b) Ta có \(\cos b=\dfrac{HB}{AB}=\dfrac{HB}{12}=>\cos b.AB=HB\)(1) ; \(\cos c=\dfrac{HC}{AC}=\dfrac{HC}{16}=>\cos C.AC=HC\)(2)

Lấy (1)+(2) => \(\cos b.AB+\cos C.AC=HB+HC\)(3)

Mặt khác ta có HB+HC=BC=20cm(4)

Từ 3 ,4 => \(\cos b.AB+c\text{os}c.AC=20\)

26 tháng 9 2021

a)AB=6cm,BC=10cm
∆ABC vuông tại A đg cao AH có
#\(AC^2=BC^2-AB^2\)
AC2=100-36=64
AC=8cm
\(AB^2=BH.BC\)
36=BH.10
BH=3,6cm
# CH=BC-BH=10-3,6=6,4cm
\(AH^2=BH.CH\)
AH2=3,6.6,4=23,04
AH=4,8cm

26 tháng 9 2021

b)
∆ABC vuông tại A đg cao AH có
#\(AB^2=BC^2-AC^2\)
AB2=625-400=225
AB=15cm
\(AB^2=BH.BC\)
225=BH.25
BH=9cm
# CH= BC-BH=25-9=16cm
\(AH.BC=AB.AC\)
AH.25=15.20=300
AH=12cm

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+12^2=20^2\)

=>\(AC^2=400-144=256\)

=>\(AC=\sqrt{256}=16\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên AH*BC=AB*AC

=>\(AH\cdot20=12\cdot16=192\)

=>AH=9,6(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{12^2}{20}=7,2\left(cm\right)\\CH=\dfrac{16^2}{20}=12,8\left(cm\right)\end{matrix}\right.\)

b: XétΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

c: \(AB\cdot cosB+AC\cdot cosC\)

\(=AB\cdot\dfrac{AB}{BC}+AC\cdot\dfrac{AC}{BC}\)

\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)

27 tháng 10 2021

b: \(AN\cdot AC=AH^2\)

\(AC^2-HC^2=AH^2\)

Do đó: \(AN\cdot AC=AC^2-HC^2\)

27 tháng 10 2021

mình cần phần d

10 tháng 10 2019

Bạn có ghi đề nhầm ko ạ

11 tháng 10 2019

hình như b) có hơn nhầm j đó

27 tháng 10 2021

a: AC=16(cm)

AM=10(cm)

27 tháng 10 2021

phần d bạn :,)))