K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d\)

\(f\left(1\right)=0\Rightarrow a\times1^3+b\times1^2+c\times1+d=0\)

\(\Rightarrow a+b+c+d=0\)

\(f\left(-1\right)=0\Rightarrow a\times\left(-1\right)^3+b\times\left(-1\right)^2+c\left(-1\right)+d=0\)

\(\Rightarrow-a+b-c+d=0\)

\(\Rightarrow a+b+c+d=-a+b-c+d=0\)

\(\Rightarrow a+b+c+d+a-b+c=d=0\)

Ta có: \(f\left(0\right)=a\times0^3+b\times0^2+c\times0+d=d=0\)

Vậy x = 0 là nghiệm thứ ba của đa thức f(x).

13 tháng 5 2017

tui biết chết liền đang mắc câu đó

11 tháng 4 2018

Thay x=-2 và x=2 vào ta được:

\(\hept{\begin{cases}8a+4b+2c+d=0\left(1\right)\\-8a+4b-2c+d=0\left(2\right)\end{cases}}\)

Trừ (1) cho (2) được: 16a+4c=0 <=> 4a+c=0 => c=-4a <=> \(\frac{c}{a}=-4\)

Cộng (1) với (2) ta được: 8b+2d=0 <=> d=-4b => \(\frac{d}{b}=-4\)

Đáp số: \(\frac{c}{a}=\frac{d}{b}=-4\)

6 tháng 4 2018

Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
     Tính chẵn lẻ của bx2 phụ thuộc vào b
     Tính chẵn lẻ của cx phụ thuộc vào c
     d là số lẻ 
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên 
Hơi khó hỉu chút nhé ahihi
 

4 tháng 5 2018

Sai rồi bạn ơi

6 tháng 7 2017

ai giúp mình đi