K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2021

a) Ta có: \(2\widehat{B}=7\widehat{C}\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}\)

Ta có: Tam giác ABC vuông tại A

\(\Rightarrow\widehat{B}+\widehat{C}=90^0\)

\(\Rightarrow\widehat{B}+\dfrac{2}{7}\widehat{B}=90^0\)\(\Rightarrow\dfrac{9}{7}\widehat{B}=90^0\Rightarrow\widehat{B}=70^0\)

\(\Rightarrow\widehat{C}=\dfrac{2}{7}\widehat{B}=20^0\)

b) Ta có: AD là phân giác góc A

\(\Rightarrow\widehat{DAC}=\dfrac{1}{2}\widehat{A}=45^0\)

Xét tam giác ADC có:

\(\widehat{ADC}+\widehat{DAC}+\widehat{C}=180^0\)

\(\Rightarrow\widehat{ADC}=180^0-\widehat{DAC}-\widehat{C}=180^0-45^0-20^0=115^0\)

 

2 tháng 5 2020

bài này dài lắm ko ai giải đâu

12 tháng 5 2020

dai den bao gio moi xong lol

15 tháng 3 2020

a) Xét tam giác ABC. Ta có:

Vì AD là tia phân giác của góc A nên:

\(\widehat{BAD}=\widehat{DAC}=\frac{\widehat{A}}{2}=40^{^o}\)

\(\widehat{ADB}=180^o-70^o-40^o=70^o\)

Vì \(\widehat{ADB}=\widehat{ABD}=70^o\)nên ABD là tam giác cân.

b)Vì \(\widehat{ADB}\)kề bù với \(\widehat{ADC}\)nên \(\widehat{ADC}=180^o-70^o=110^o\)

Do tam giác ACD là tam giác nên \(\widehat{ACD}=180^o-40^o-110^o=30^o\)

c) Đặt đỉnh ngoài của B là B1.

Ta có: \(\widehat{B_1}=180^o-70^o=110^o\)

28 tháng 7 2017

tuwj vex hinhf nha 

1 a. xét tam giác abc có

góc  a + góc b + góc  c = 180 độ

t/s vào tính đc góc  b + góc  c= 120 độ 

góc acb = 120 độ : ( 2+1).1=40 độ 

b) xét tam giác abc có 

góc  a + góc b + góc  c = 180 độ

t/s vào tính đc góc abc = 80 độ

có bi là tia phân giác của góc abc 

=> góc abi = góc ibc = 80 độ :2=40 độ

có ci là tia phân giác của góc acb 

=> góc aci = gócicb = 40 độ : 2 = 20 độ 

xét tam giác ibc có 

góc bic + góc ibc + bci = 180độ 

thay số vào tính đc góc bic = 120 đọ( nghĩ z chứ chưa tính kĩ nha ) 

28 tháng 7 2017

2.

có ae=ad 

=> tam giác ade cân tại e      (1)

lại có góc a = 60 độ     (2) 

(1)(2)=> tam giác ade là tam giác đều 

b) có d là trung điểm của ac

=> ad=cd        (1)

lại có ed=ad ( tam giác ade là tam giác đều )(2) 

(1)(2)=> cd=ed 

=> tam giác dec cân tại d 

c) 

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:a, - 120x5y4 b, 60x6y2 c, -5x15y3Bài 2: Điền đơn thức thích hợp vào chỗ trống:a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5Bài 3: Thu gọn các đơn thức sau:a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2Bài 4: Cho tam giác ABC vuông tại A (AC>AB)....
Đọc tiếp

Bài 1: Phân tích các biểu thức sau thành tích của hai đơn thức trong đó có một đơn thức là 20x5y2:
a, - 120x5y4 b, 60x6y2 c, -5x15y3
Bài 2: Điền đơn thức thích hợp vào chỗ trống:
a, 3x2y + ..........= 5 x2y b,........-2 x2 = -7 x2 c,......+.........+ x5 = x5
Bài 3: Thu gọn các đơn thức sau:
a, 5xy2(-3)y; b, 3/4 a2b3 . 2,5a; c, 1,5p.q.4p3.q2
d,2x2y.3xy2; e, 2xy.4/5x2y3.10xyz f,-10y2.(2xy)3.(-3x)2
Bài 4: Cho tam giác ABC vuông tại A (AC>AB). Gọi I là trung điểm của BC. Vẽ đường trung trực của cạnh BC cấtC tại D. Trên tia đối của tia AC lấy điểm E sao cho AE = AD. Gọi F là giao điểm của BE và đường thẳng AI. Chứng minh :
a, CD = BE; b, Góc BEC = 2. góc BEC
c, Tam giác AEF cân d, AC=BF
Bài 5: Cho tam giác ABC có góc A bằng 90o và BD là đường phân giác. Trên BC lấy điểm E sao cho BE = BA
a, Chứng minh AD = DE và BD là đường trung trực của đoạn thẳng AE
b, Kẻ AH vuông góc với BC. Chứng minh: AE là tia phân giác của góc HAC
c, Chứng minh AD<CD
d, Gọi tia Cx là tia đối của tia CB. Tia phân giác của góc Acx cắt đường thẳng BD tại K. Tính số đo góc BAK
Bài 6: Cho tam giác abc cân tại a, đường phân giác của góc b cắt ac tại M.
Kẻ me vuông góc với bc ( e thuộc bc). đường thẳng em cắt ba tại I
a, chứng minh tam giác abm = tam giác ebm
b, chứng minh bm là đường trung trực của ae
c, so sánh am và mc
d, chứng minh tam giác BCI cân

0