Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Tổng số phần bằng nhau: 8+1=9(phần)
Số bé là: 72:9 x 1 = 8
Số lớn là: 8 x 8 = 64
Đ.số:2 số đó là 8 và 64
Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47
Gọi số cần tìm có dạng là \(\overline{ab}\)
2 lần chữ số hàng chục bé hơn chữ số hàng đơn vị là 1 nên b-2a=1
Nếu viết số đó theo thứ tự ngược lại thì được một số mới với tổng của số mới và số ban đầu là 143
=>\(\overline{ab}+\overline{ba}=143\)
=>11a+11b=143
=>a+b=13
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}-2a+b=1\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=-12\\a+b=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=9\end{matrix}\right.\)
Gọi chữ số hàng chục là : x ; chữ số hàng đơn vị là : y . Trong đó { \(x,y\in N\); \(x\ne0\)}
Số đó có dạng : \(\overline{xy}\)
Vì chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 , nên ta có phương trình :
x - y = 2 (1)
Vì nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 6 dư 2 nên :
\(\overline{xy}=\left(x+y\right).6+1\)
\(\Leftrightarrow10.x+y=6x+6y+1\)
\(\Leftrightarrow4x-5y=1\)(2)
Từ (1) và (2) ta được hệ phương trình :
\(\hept{\begin{cases}x-y=2\\4x-5y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-4y=8\\4x-5y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=7\\4x-5.7=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=7\\x=9\end{cases}}\)
Vậy số cần tìm là : 97