Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,5x^3-3x^2+x-x^3-4x^2-x\)
\(=4x^3-7x^2\)
\(b,y^2+2y-2y^2-3y+3\)
\(=-y^2-y+3\)
\(c,\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1\)
\(=\frac{1}{6}x^3-2x^2-5x+1\)
\(d,\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2\)
\(=xy^2+\frac{1}{6}y^2\)
\(e,2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy\cdot y\)
\(=3xy-\frac{3}{2}z^2y+2zy^2\)
\(g,3^n+3^{n+2}\)
\(=3^n+3^n.3^2\)
\(=3^n\cdot10\)
\(h,1,5\cdot2^n-2^{n-1}\)
\(=1,5\cdot2^n-2^n\cdot\frac{1}{2}\)
\(=2^n\cdot1\)
\(=2^n\)
\(i,2^n-2^n-2\)
\(=-2\)
\(k,\frac{2}{3}\cdot3^n-3^{n-1}\)
\(=\frac{2}{3}\cdot3^n-3^n\cdot\frac{1}{3}\)
\(=3^n\cdot\frac{1}{3}\)
\(=\frac{3^n}{3}\)
sẵn bán nick luôn :)
Cái này hơi lâu thật,nhưng kiên trì 1 chút là đc ngay thôi bn !
a, \(5x^3-3x+x-x^3-4x^2-x=4x^3-3x-4x^2\)
b, \(y^2+2y-2y^2-3y+3=-y^2-y+3\)
c, \(\frac{1}{2}x^3-2x^2-4x-\frac{1}{2}x^3-x+1=-2x^2-5x+1\)
d, \(\frac{3}{4}xy^2-\frac{1}{2}y^2-\left(-\frac{1}{4}xy^2\right)+\frac{2}{3}y^2=\frac{3}{4}xy^2-\frac{1}{2}y^2+\frac{1}{4}xy^2+\frac{2}{3}y^2=xy^2+\frac{1}{6}y^2\)
e, \(2xy-2yz.z+xy+\frac{1}{2}z^2y+2zy.y=2xy-2yz^2+xy+\frac{1}{2}z^2y+2zy^2=3xy-\frac{3}{2}z^2y+2zy^2\)
g, \(3^n+3^{n+2}\)( chắc tối giản rồi,ko phân tích đc nữa. )
h, \(1,5.2^n-2^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
i, \(2^n-2^n-2=-2\)
k, \(\frac{2}{3}.3^n-3^{n-1}\)( chắc tối giản rồi,ko phân tích đc nữa. )
Có j sai,mong mọi người góp ý,thông cảm ạ.
a/ Ta có \(\left|\frac{5}{6}-2x\right|=\frac{7}{8}\)
=> \(\orbr{\begin{cases}\frac{5}{6}-2x=\frac{7}{8}\\\frac{5}{6}-2x=\frac{-7}{8}\end{cases}}\)=> \(\orbr{\begin{cases}-2x=\frac{1}{24}\\-2x=\frac{-41}{24}\end{cases}}\)=> \(\orbr{\begin{cases}x=-\frac{1}{48}\\x=\frac{41}{48}\end{cases}}\)
Vậy \(x=-\frac{1}{48}\)hoặc \(x=\frac{41}{48}\)thì \(\left|\frac{5}{6}-2x\right|=\frac{7}{8}\)
b/ Ta có \(B=5x^2-7y+6\)
Thay \(x=\frac{-1}{5}\)và \(y=\frac{-3}{7}\)vào biểu thức B, ta có:
\(5\left(-\frac{1}{5}\right)^2-7\left(-\frac{3}{7}\right)+6\)= \(\frac{1}{5}-\left(-3\right)+6=\frac{1}{5}+3+6=\frac{1}{5}+9=\frac{46}{5}\)
Vậy giá trị của biểu thức B bằng \(\frac{46}{5}\)khi \(x=\frac{-1}{5}\)và \(y=\frac{-3}{7}\).
a/ Ta có 6 5 − 2x = 8 7 => 6 5 − 2x = 8 7 6 5 − 2x = 8 −7 => −2x = 24 1 −2x = 24 −41
=> x = − 48 1 x = 48 41 Vậy x = − 48 1 hoặc x = 48 41 thì 6 5 − 2x = 8 7
b/ Ta có B = 5x 2 − 7y + 6 Thay x = 5 −1 và y = 7 −3 vào biểu thức B, ta có: 5 − 5 1 2 − 7 − 7 3 + 6= 5 1 − −3 + 6 = 5 1 + 3 + 6 = 5 1 + 9 = 5 46
Vậy giá trị của biểu thức B bằng 5 46 khi x = 5 −1 và y = 7 −3 .
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
1) Đặt \(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Rightarrow3D=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3D-D=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
\(\Leftrightarrow2D=1-\frac{1}{3^{100}}\)
\(\Leftrightarrow D=\frac{3^{100}-1}{2\cdot3^{100}}\)
Vậy \(D=\frac{3^{100}-1}{2\cdot3^{100}}\)
2) Ta có: \(\frac{49}{58}\cdot\frac{2^5}{4^2}-\frac{7^2}{-58}\cdot3\)
\(=\frac{49}{58}\cdot2-\frac{49}{58}\cdot3\)
\(=-1\cdot\frac{49}{58}\)
\(=-\frac{49}{58}\)
a/ Ta có\(\left(-\frac{1}{3}xy\right)\left(3x^2yz^2\right)\)= \(-x^3y^2z^2\)có hệ số là -1
b/ Ta có \(-54y^2.bx\)= \(-54bxy^2\)có hệ số là -54b (với b là hằng số)
c/ Ta có \(\left(-2x^2y\right)\left(-\frac{1}{2}\right)^2x\left(y^2z\right)^3\)= \(x^3y\left(y^2z\right)^3\)= \(\left(x^3y\right)\left(y^6z^3\right)\)= \(x^3y^7z^3\)có hệ số là 1.
`Answer:`
`P=8xy^2-4/7xy-2xy-10`
`=8xy^2+(-4/7xy-2xy)-10`
`=8xy^2-\frac{18}{7}-10`
`Answer:`
Sửa giúp mình kết quả cuối:
`=8xy^2-\frac{18}{7}xy-10`