Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
=>\(3\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
=>\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
=>\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
=>\(1-\frac{1}{x+3}=\frac{375}{376}\)
=>\(\frac{1}{x+3}=1-\frac{375}{376}\)
=>\(\frac{1}{x+3}=\frac{1}{376}\)
=>x+3=376
=>x=376-3
=>x=373
Vậy x=373
Đặt \(A=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
\(3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{\left(x+3\right)}\right)=3\cdot\frac{49}{148}\)
\(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{x\left(x+3\right)}=\frac{147}{148}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{147}{148}\)
\(1-\frac{1}{x-1}=\frac{147}{148}\)
\(\frac{1}{x-1}=1-\frac{147}{148}\)
\(\frac{1}{x-1}=\frac{1}{148}\)
\(\Rightarrow x-1=148\)
\(\Leftrightarrow x=148+1\)
\(\Leftrightarrow x=149\)
Vậy x=149
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x.\left(x+3\right)}=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{x+3}\right)=\frac{49}{148}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{49}{148}:\frac{1}{3}\)
\(\Rightarrow1-\frac{1}{x+3}=\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{147}{148}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{148}\)
\(\Rightarrow x+3=148\)
\(\Rightarrow x=148-3\)
\(\Rightarrow x=145\)
Vậy x = 145
_Chúc bạn học tốt_
Ta có 1/1x4+1/4x7+...+1/2002x2005
<=> =1/3.3(1/1x4+1/4x7+...+1/2002x2005)
=1/3(3/1x4+3/4x7+...+3/2002x2005)
=1/3(1-1/4+1/4-1/7+...+1/2002-1/2005)
=1/3(1-1/2005)
=1/3.2004/2005
=1.2004/3.2005
=668/2005
\(\frac{1}{1.4}\)+ \(\frac{1}{4.7}\)+...+\(\frac{1}{2002.2005}\)=3(\(\frac{1}{1.4}\)+ \(\frac{1}{4.7}\)+...+ \(\frac{1}{2002.2005}\)):3=(\(\frac{3}{1.4}\)+ \(\frac{3}{4.7}\)+...+ \(\frac{3}{2002.2005}\)):3= (1-\(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{7}+...+\frac{1}{2002}-\frac{1}{2005}\)):3=(1-\(\frac{1}{2005}\)) : 3 = \(\frac{668}{2005}\)
bạn ơi như là cô giáo cho đề sai rồi kết quả phải là \(\frac{375}{376}\)thì mới giải được
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{125}{376}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{x+3}=\frac{125}{376}:\frac{1}{3}=\frac{375}{376}\)
\(\Rightarrow\frac{1}{x+3}=1-\frac{375}{376}=\frac{1}{376}\Leftrightarrow x+3=376\Leftrightarrow x=373\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{125}{376}\)
\(3.\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{125}{376}\)
\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{375}{376}\)
\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{375}{376}\)
\(1-\frac{1}{x+3}=\frac{375}{376}\)
\(\frac{x+2}{x+3}=\frac{375}{376}\)
=> x + 2 = 375
=> x = 375 - 2
=> x = 373
A = 1/1.4 + 1/4.7 + 1/7.10 + ... + 1/97.100
3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/97.100 = (4-1)/1.4 + (7-4)/4.7 + (10-7)/7.10 + ... + (100-97)/97.100
= 1/1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/97 - 1/100 = 1 - 1/100 = 99/100
=> A = 33/100
A = x/2 => x = 2.A = 33/50