Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
a) \(\left(n+6\right)^2-\left(n-6\right)^2\)
\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)
\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)
\(=12.2n\)
\(=24n\)
Vì 24n chia hết cho 24 với mọi n
=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)
b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.
\(n^2+4n+3\)
\(=n^2+n+3n+3\)
\(=n\left(n+1\right)+3\left(n+1\right)\)
\(=\left(n+3\right)\left(n+1\right)\)
Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )
Thay n = 2k + 1 vào ta được
\(\left(n+3\right)\left(n+1\right)\)
\(=\left(2k+1+3\right)\left(2k+1+1\right)\)
\(=\left(2k+4\right)\left(2k+2\right)\)
\(=2\left(k+2\right)2\left(k+1\right)\)
\(=4\left(k+2\right)\left(k+1\right)\)
Vì (k + 2)(k + 1) là tích của hai số liên tiếp
=> (k + 2)(k + 1) chia hết cho 2
=> 4(k + 2)(k + 1) chia hết cho 8
=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )
c) \(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)
\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)
\(=4\left(2n+2\right)\)
\(=4.2\left(n+1\right)\)
\(=8\left(n+1\right)\)
Vì 8(n + 1) chia hết cho 8 với mọi n
=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )
a, \(\left(5n+2\right)^2-4=\left(5n+2-2\right)\left(5n+2+2\right)=5n\left(5n+4\right)⋮5\)
b, \(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì (n-1)n(n+1) là tích 3 số nguyên liên tiếp
=>(n-1)n(n+1) chia hết cho 6 hay n^3-n chia hết cho 6
c, \(a+b+c=0\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^3=\left(-c\right)^3\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3-3abc=-c^3\)
=>a^3+b^3+c^3=3abc
1.2+2.3+3.4+ …+ n(n+1)
A = [1.2.(3 - 0) + 2.3.(4 - 1) + 3.4(5 – 2) + …..+ n(n + 1)( (n+2) – (n – 1))] : 3
A = [ 1.2.3 – 1.2.3 + 2.3.4 – 2.3.4 +……+ n( n+1)(n+2)] : 3
A = n(n+ 1)(n+2) :3
1.2.3 + 2.3.4+ 3.4.5 + ….+ n(n+1)(n+2)
= [ 1.2.3(4 – 0) + 2.3.4( 5 -1) + 3.4.5.(6 -2) + ……+ n(n+1)(n+2)( (n+3) – (n-1))]: 4
= n(n+1)(n+2)(n+3) : 4