K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2018

bài 1:

a:\(\sqrt{\left(\sqrt{3}-2\right)^2}\)+\(\sqrt{\left(1+\sqrt{3}\right)^2}\)
=\(\sqrt{3}-2+1+\sqrt{3}\)
=\(2\sqrt{3}-1\)
b; dài quá mink lười làm thông cảm 
bài 2:
\(\sqrt{x^2-2x+1}=7\)
=>\(\sqrt{\left(x-1\right)^2}=7 \)
=>\(\orbr{\begin{cases}x-1=7\\x-1=-7\end{cases}}\)
=>\(\orbr{\begin{cases}x=8\\x=-6\end{cases}}\)
b: \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)
=>\(\sqrt{4\left(x-5\right)}-9\sqrt{x-5}=\sqrt{1-x}\)
\(=2\sqrt{x-5}-9\sqrt{x-5}=\sqrt{1-x}\)
=>\(-7\sqrt{x-5}=\sqrt{1-x}\)
=\(-7.\left(x-5\right)=1-x\)
=>\(-7x+35=1-x\)
=>\(-7x+x=1-35\)
=>\(-6x=-34\)
=>\(x\approx5.667\)
mink sợ câu b bài 2 sai đó bạn

11 tháng 8 2018

1 a)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(|2-\sqrt{3}|+|1+\sqrt{3}|\)

\(2-\sqrt{3}+1+\sqrt{3}\)

\(2+1\)\(3\)

b) \(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\right)\cdot\left(3\sqrt{\frac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{6}{3^2}}-4\sqrt{\frac{6}{2^2}}\right)\cdot\left(3\sqrt{\frac{6}{3^2}}-\sqrt{6}\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-\frac{4}{2}\sqrt{6}\right)\cdot\left(\frac{3}{3}\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\frac{3}{2}\sqrt{6}+\frac{2}{3}\sqrt{6}-2\sqrt{6}\right)\cdot\left(\sqrt{6}-\sqrt{6}\cdot\sqrt{2}-\sqrt{6}\right)\)

\(\left(\sqrt{6}\left(\frac{3}{2}+\frac{2}{3}-2\right)\right)\cdot\left(\sqrt{6}\left(1-\sqrt{2}-1\right)\right)\)

\(\sqrt{6}\frac{1}{6}\cdot\sqrt{6}\left(-\sqrt{2}\right)\)

\(\sqrt{6}^2\left(\frac{-\sqrt{2}}{6}\right)\)

\(6\frac{-\sqrt{2}}{6}\)=\(-\sqrt{2}\)

2 a) \(\sqrt{x^2-2x+1}=7\)

<=> \(\sqrt{x^2-2x\cdot1+1^2}=7\)

<=> \(\sqrt{\left(x-1\right)^2}=7\)

<=> \(|x-1|=7\)

Nếu \(x-1>=0\)=>\(x>=1\)

=> \(|x-1|=x-1\)

\(x-1=7\)<=>\(x=8\)(thỏa)

Nếu \(x-1< 0\)=>\(x< 1\)

=> \(|x-1|=-\left(x-1\right)=1-x\)

\(1-x=7\)<=>\(-x=6\)<=> \(x=-6\)(thỏa)

Vậy x=8 hoặc x=-6

b) \(\sqrt{4x-20}-3\sqrt{\frac{x-5}{9}}=\sqrt{1-x}\)

<=> \(\sqrt{4\left(x-5\right)}-3\frac{\sqrt{x-5}}{3}=\sqrt{1-x}\)

<=> \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\sqrt{x-5}=\sqrt{1-x}\)

ĐK \(x-5>=0\)<=> \(x=5\)

\(1-x\)<=> \(-x=-1\)<=> \(x=1\)

Ta có \(\sqrt{x-5}=\sqrt{1-x}\)

<=> \(\left(\sqrt{x-5}\right)^2=\left(\sqrt{1-x}\right)^2\)

<=> \(x-5=1-x\)

<=> \(x-x=1+5\)

<=> \(0x=6\)(vô nghiệm)

Vậy phương trình vô nghiệm

Kết bạn với mình nha :)

30 tháng 7 2019

Đề câu c ptrinh = 4 là phải riêng ra chứ

\(a,\frac{3x+2}{\sqrt{x+2}}=2\sqrt{x+2}\)

\(\Rightarrow3x+2=2\sqrt{x+2}.\sqrt{x+2}\)

\(\Rightarrow3x+2=2\left(x+2\right)\)

\(\Rightarrow3x+2=2x+4\)

\(\Rightarrow3x-2x=4-2\)

\(\Rightarrow x=2\)

\(b,\sqrt{4x^2-1}-2\sqrt{2x+1}=0\)

\(\Rightarrow\sqrt{\left(2x+1\right)\left(2x-1\right)}-2\sqrt{2x+1}=0\)

\(\Rightarrow\sqrt{2x+1}\left(\sqrt{2x-1}-2\right)=0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{2x+1}=0\\\sqrt{2x-1}-2=0\end{cases}\Rightarrow\orbr{\begin{cases}2x+1=0\\\sqrt{2x-1}=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=-1\\2x-1=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{2}\end{cases}}}\)

\(c,\sqrt{x-2}+\sqrt{4x-8}-\frac{2}{5}\sqrt{\frac{25x-50}{4}}=4\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4\left(x-2\right)}-\frac{2}{5}\sqrt{\frac{25\left(x-2\right)}{4}}=4\)

\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\frac{2}{5}.\frac{5\sqrt{x-2}}{2}=4\)

\(\Rightarrow\sqrt{x-2}+2\sqrt{x-2}-\sqrt{x-2}=4\)

\(\Rightarrow2\sqrt{x-2}=4\)

\(\Rightarrow\sqrt{x-2}=2\)

\(\Rightarrow x-2=4\)

\(\Rightarrow x=6\)

\(d,\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)

\(\Rightarrow\sqrt{x+4}=\sqrt{1-2x}+\sqrt{1-x}\)

\(\Rightarrow x+4=1-2x+2\sqrt{\left(1-2x\right)\left(1-x\right)}+1-x\)

\(\Rightarrow x+4=2-3x+2\sqrt{1-3x+2x^2}\)

\(\Rightarrow x+4-2+3x=2\sqrt{1-3x+2x^2}\)

\(\Rightarrow4x+2=2\sqrt{1-3x+2x^2}\)

\(\Rightarrow2x+1=\sqrt{1-3x+2x^2}\)

\(\Rightarrow4x^2+4x+1=1-3x+2x^2\)

\(\Rightarrow4x^2-2x^2+4x+3x+1-1=0\)

\(\Rightarrow2x^2+7x=0\)

\(\Rightarrow x\left(2x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\2x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-7}{2}\end{cases}}}\)

\(e,\frac{2x}{\sqrt{5}-\sqrt{3}}-\frac{2x}{\sqrt{3}+1}=\sqrt{5}+1\)

\(\frac{2x\left(\sqrt{5}+\sqrt{3}\right)}{5-3}-\frac{2x\left(\sqrt{3}-1\right)}{3-1}=\sqrt{5}+1\)

\(\Rightarrow x\left(\sqrt{5}+\sqrt{3}\right)-x\left(\sqrt{3}-1\right)=\sqrt{5}+1\)

\(\Rightarrow\sqrt{5}x+\sqrt{3}x-\sqrt{3x}+x=\sqrt{5}+1\)

\(\Rightarrow\sqrt{5}x+x=\sqrt{5}+1\)

\(\Rightarrow x\left(\sqrt{5}+1\right)=\sqrt{5}+1\)

\(\Rightarrow x=1\)

NV
12 tháng 10 2020

a/ Giải rồi

b/ ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)

\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)

Pt trở thành:

\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)

\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)

\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)

\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)

\(\Leftrightarrow...\)

NV
12 tháng 10 2020

e/ ĐKXD: \(x>0\)

\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)

Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)

\(\Rightarrow t^2=x+\frac{1}{4x}+1\)

Pt trở thành:

\(5t=2\left(t^2-1\right)+4\)

\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)

\(\Leftrightarrow2x-4\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)

\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)

17 tháng 10 2020

1) Ta có: \(\left(\sqrt{12}-6\sqrt{3}+\sqrt{24}\right)\cdot\sqrt{6}-\left(\frac{5}{2}\sqrt{2}+12\right)\)

\(=\left(2\sqrt{3}-6\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{25}{4}\cdot2}+12\right)\)

\(=\left(-4\sqrt{3}+2\sqrt{6}\right)\cdot\sqrt{6}-\left(\sqrt{\frac{50}{4}}+12\right)\)

\(=-12\sqrt{2}+12-\frac{5\sqrt{2}}{2}-12\)

\(=\frac{-24\sqrt{2}-5\sqrt{2}}{2}\)

\(=\frac{-29\sqrt{2}}{2}\)

2) Ta có: \(\frac{26}{2\sqrt{3}+5}-\frac{4}{\sqrt{3}-2}\)

\(=\frac{26\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}+\frac{4}{2-\sqrt{3}}\)

\(=\frac{26\left(5-2\sqrt{3}\right)}{25-12}+\frac{4\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=2\left(5-2\sqrt{3}\right)+4\left(2+\sqrt{3}\right)\)

\(=10-4\sqrt{3}+8+4\sqrt{3}\)

\(=18\)

3) ĐK để phương trình có nghiệm là: x≥0

Ta có: \(\sqrt{x^2-6x+9}=2x\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=2x\)

\(\Leftrightarrow\left|x-3\right|=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=2x\\x-3=-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-3-2x=0\\x-3+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x-3=0\\3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-x=3\\3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Vậy: S={1}

4) ĐK để phương trình có nghiệm là: \(x\ge\frac{1}{2}\)

Ta có: \(\sqrt{4x^2+1}=2x-1\)

\(\Leftrightarrow\left(\sqrt{4x^2+1}\right)^2=\left(2x-1\right)^2\)

\(\Leftrightarrow4x^2+1=4x^2-4x+1\)

\(\Leftrightarrow4x^2+1-4x^2+4x-1=0\)

\(\Leftrightarrow4x=0\)

hay x=0(loại)

Vậy: S=∅

AH
Akai Haruma
Giáo viên
23 tháng 10 2020

Lời giải:

a) ĐK: $x\geq 2$

PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$

$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$

\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)

Vậy..........

b) ĐK: $x\geq 0$

PT $\Leftrightarrow (\sqrt{x}-3)^2=0$

$\Leftrightarrow \sqrt{x}-3=0$

$\Leftrightarrow x=9$ (thỏa mãn)

c) ĐK: $x\geq 3$

PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$

$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$

$\Leftrightarrow 3\sqrt{x-3}=7$

$\Leftrightarrow x-3=(\frac{7}{3})^2$

$\Rightarrow x=\frac{76}{9}$

d)

ĐK: $x\geq \frac{-1}{2}$

PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$

$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$

$\Leftrightarrow 3\sqrt{2x+1}=6$

$\Leftrightarrow \sqrt{2x+1}=2$

$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)

23 tháng 10 2020

cảm ơn nha <3

NV
24 tháng 10 2019

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow2\sqrt{\left(x-2\right)\left(x+2\right)}-6\sqrt{x-2}+\sqrt{x+2}-3=0\)

\(\Leftrightarrow2\sqrt{x-2}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x-2}+1\right)\left(\sqrt{x+2}-3\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Rightarrow x=11\)

b/ ĐKXĐ: ....

Đặt \(\left\{{}\begin{matrix}\sqrt{x-2016}=a>0\\\sqrt{y-2017}=b>0\\\sqrt{z-2018}=a>0\end{matrix}\right.\)

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{4}-\frac{a-1}{a^2}+\frac{1}{4}-\frac{b-1}{b^2}+\frac{1}{4}-\frac{c-1}{c^2}=0\)

\(\Leftrightarrow\frac{\left(a-2\right)^2}{a^2}+\frac{\left(b-2\right)^2}{b^2}+\frac{\left(c-2\right)^2}{c^2}=0\)

\(\Leftrightarrow a=b=c=2\Rightarrow\left\{{}\begin{matrix}x=2020\\y=2021\\z=2022\end{matrix}\right.\)

NV
24 tháng 10 2019

a/ ĐK: \(x\ge0\)

\(\Leftrightarrow\sqrt{3+x}=x^2-3\)

Đặt \(\sqrt{3+x}=a>0\Rightarrow3=a^2-x\) pt trở thành:

\(a=x^2-\left(a^2-x\right)\)

\(\Leftrightarrow x^2-a^2+x-a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+a+1\right)=0\)

\(\Leftrightarrow x=a\) (do \(x\ge0;a>0\))

\(\Leftrightarrow\sqrt{3+x}=x\Leftrightarrow x^2-x-3=0\)

d/ ĐKXĐ: ...

\(\sqrt{6x^2+1}=\sqrt{2x-3}+x^2\)

\(\Leftrightarrow\sqrt{2x-3}-1+x^2+1-\sqrt{6x^2+1}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^4+2x^2+1-6x^2-1}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)\left(x-2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt{2x-3}+1}+\frac{x^2\left(x+2\right)}{\left(x^2+1\right)^2+\sqrt{6x^2+1}}\right)=0\)

\(\Leftrightarrow x=2\) (phần trong ngoặc luôn dương với mọi \(x\ge\frac{3}{2}\))

AH
Akai Haruma
Giáo viên
28 tháng 6 2019

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)