\(1-\left(\dfrac{2}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a: \(=\left(4\sqrt{2}-6\sqrt{2}\right)\cdot\dfrac{\sqrt{2}}{2}=-2\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}=-2\)

b: \(=\dfrac{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-2\left(\sqrt{6}-1\right)\)

\(=\sqrt{6}-2\sqrt{6}+2=2-\sqrt{6}\)

10 tháng 9 2017

1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)

\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)

\(=1+2\sqrt{2}+2-3\)

\(=2\sqrt{2}\)

10 tháng 9 2017

3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)

ĐKXĐ \(x>0,x\ne1\)

pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)

\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)

b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)

\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)

\(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)

\(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)

Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)

(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)

2 tháng 6 2017

ta có x=1 , thế vào f(x)

2 tháng 6 2017

x=1/2

4 tháng 2 2019


\[\begin{array}{l}
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}} - \frac{{\sqrt x - 1}}{{\sqrt x + 1}}} \right)\\
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}.\frac{{{{\left( {\sqrt x + 1} \right)}^2} - {{\left( {\sqrt x - 1} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = {\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)^2}.\frac{{4\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = \frac{{4\sqrt x {{\left( {\frac{{\sqrt x }}{2} - \frac{1}{{2\sqrt x }}} \right)}^2}}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\
Q = \frac{{4\sqrt x {{\left( {\frac{{x - 1}}{{2\sqrt x }}} \right)}^2}}}{{x - 1}}\\
Q = \frac{{\sqrt x .\frac{{{{\left( {x - 1} \right)}^2}}}{x}}}{{x - 1}}\\
Q = \frac{{x\sqrt x - \sqrt x }}{x}
\end{array}\]

23 tháng 7 2018

a) ĐKXĐ: : phải là 1 biểu thức có nghĩa. b) ko có x nên ko phải tìm

23 tháng 7 2018

Ô xin lỗi bạn, do lúc trước mình ko thấy đề nên bấm bậy, xin lỗi nhiều

25 tháng 8 2018

điều kiện xác định : \(x\ge0;x\ne\dfrac{1}{4}\)

ta có : \(A=\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{4x-1}\right):\dfrac{1}{8x-4\sqrt{x}}\)

\(\Leftrightarrow A=\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right):\dfrac{1}{4\sqrt{x}\left(2\sqrt{x}-1\right)}\)

\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}+1-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}\left(2\sqrt{x}-1\right)}{1}\)

\(\Leftrightarrow A=\dfrac{4\sqrt{x}}{2\sqrt{x}+1}\)