Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D G
\(\text{a) Ta có : }2\overrightarrow{CD}=3\overrightarrow{DB}\\ \Rightarrow\overrightarrow{DC}=-\frac{3}{2}\overrightarrow{DB}\\ \Rightarrow D;B;C\text{ thẳng hàng },D\text{ nằm giữa }B;C\left(\frac{3}{2}< 0\right)\\ \Rightarrow\overrightarrow{BC}=\overrightarrow{BD}+\overrightarrow{DC}=\overrightarrow{BD}+\frac{3}{2}\overrightarrow{BD}=\frac{5}{2}\overrightarrow{BD}\\ 5\overrightarrow{EB}=2\overrightarrow{EC}\\ \Rightarrow\overrightarrow{EB}=\frac{2}{5}\overrightarrow{EC}\\ \Rightarrow E;B;C\text{ thẳng hàng },B\text{ nằm giữa }E;C\left(\frac{2}{5}>0;EB< EC\right)\\ \Rightarrow\overrightarrow{BC}=\overrightarrow{EC}-\overrightarrow{EB}=\overrightarrow{EC}-\frac{2}{5}\overrightarrow{EC}=\frac{3}{5}\overrightarrow{EC}\)
\(\Rightarrow\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\\ =\overrightarrow{AB}+\frac{2}{5}\overrightarrow{BC}=\overrightarrow{AB}+\frac{2}{5}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\\ =\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}-\frac{2}{5}\overrightarrow{AB}=\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\)
\(\overrightarrow{AE}=\overrightarrow{EC}+\overrightarrow{CA}\\ =\frac{5}{3}\overrightarrow{BC}-\overrightarrow{AC} =\frac{5}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)-\overrightarrow{AC}\\ =\frac{5}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}-\overrightarrow{AC}=\frac{2}{3}\overrightarrow{AC}-\frac{5}{3}\overrightarrow{AB}\)
\(b\text{) Theo tính chất trọng tâm }\Delta:3\overrightarrow{AG}=\overrightarrow{AA}+\overrightarrow{AB}+\overrightarrow{AC}\\ =\overrightarrow{0}+\overrightarrow{AB}+\overrightarrow{AC}\\ =\left(\frac{9}{4}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}\right)-\left(\frac{1}{2}\overrightarrow{AC}+\frac{5}{4}\overrightarrow{AC}\right)\\ =\frac{15}{4}\left(\frac{3}{5}\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\right)-\frac{3}{4}\left(\frac{2}{3}\overrightarrow{AC}+\frac{5}{3}\overrightarrow{AC}\right)\\ =\frac{15}{4}\overrightarrow{AD}-\frac{3}{4}\overrightarrow{AE}\)
\(\Rightarrow\overrightarrow{AG}=\frac{5}{4}\overrightarrow{AD}-\frac{1}{4}\overrightarrow{AE}\)
Các kí hiệu bên dưới đều là vecto chứ ko phải đoạn thẳng:
a/ \(BB'+CC'+BA+CA=2AA'+BA+CA\)
\(=2\left(AB+BA'\right)+BA+CA=2AB+2BA'+BA+CA\)
\(=AB+CA+2BA'=CB+2BA'=CA'+A'B+2BA'\)
\(=BA'+CA'\)
b/ \(AA'+BB'+CC'=AB+BA'+BC+CB'+CA+AC'\)
\(=AB+BC+CA+BA'+CB'+AC'\)
\(=AC+CA+BA'+CB'+AC'\)
\(=BA'+CB'+AC'\)
a) Chữa đề: \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)
\(Ta\text{ }có:\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DA}+\overrightarrow{AB}\\ =\overrightarrow{CB}+\overrightarrow{DA}+\left(\overrightarrow{BA}+\overrightarrow{AB}\right)=\overrightarrow{CB}+\overrightarrow{DA}\)
\(\)\(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CA}+\overrightarrow{CB}+\overrightarrow{DC}\\ =2\overrightarrow{CM}+2\overrightarrow{NC}=2\left(\overrightarrow{NC}+\overrightarrow{CM}\right)=2\overrightarrow{NM}\)
Vậy \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{NM}\)
\(\text{b) }\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=-\left(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{CA}+\overrightarrow{CB}\right)\\ =-\left[\left(\overrightarrow{DA}+\overrightarrow{DB}\right)+\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\right]\\ =-\left(2\overrightarrow{DM}+2\overrightarrow{CM}\right)=2\left(\overrightarrow{MD}+\overrightarrow{MC}\right)=4\left(\overrightarrow{MN}\right)\)
\(\text{c) }2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{DA}\right)+\left(\overrightarrow{AI}+\overrightarrow{NA}\right)\right]\\ =2\left[\left(\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{DB}\right)+\overrightarrow{NI}\right]=2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)\)
Mà IN là dường trung bình \(\Delta BCD\)
\(\Rightarrow\left\{{}\begin{matrix}IN//BD\\IN=\frac{1}{2}BD\end{matrix}\right.\Rightarrow\overrightarrow{IN}=\frac{1}{2}\overrightarrow{BD}\\ \Rightarrow2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)\\ =2\left(\overrightarrow{DB}+\overrightarrow{NI}\right)=2\left(\overrightarrow{DB}+\frac{1}{2}\overrightarrow{DB}\right)=2\cdot\frac{3}{2}\overrightarrow{DB}=3\overrightarrow{DB}\)
ĐT <=> \(\overrightarrow{BA}-\overrightarrow{EC}+\overrightarrow{FD}-\overrightarrow{CA}-\overrightarrow{FE}+\overrightarrow{DB}=\overrightarrow{0}\)
<=> \(\overrightarrow{BA}-\overrightarrow{EC}+\overrightarrow{FD}-\overrightarrow{CA}+\overrightarrow{EF}-\overrightarrow{BD}=\overrightarrow{0}\)
<=> \(\left(\overrightarrow{BA}-\overrightarrow{BD}\right)+\overrightarrow{FD}+\left(\overrightarrow{EF}-\overrightarrow{EC}\right)-\overrightarrow{CA}=\overrightarrow{0}\)
<=> \(\overrightarrow{DA}+\overrightarrow{FD}+\overrightarrow{CF}-\overrightarrow{CA}=\overrightarrow{0}\)
<=> \(\left(\overrightarrow{FD}+\overrightarrow{DA}\right)+\left(\overrightarrow{CF}-\overrightarrow{CA}\right)=\overrightarrow{0}\)
<=>\(\overrightarrow{FA}+\overrightarrow{AF}=\overrightarrow{FF}=\overrightarrow{0}\) ( đpcm )