K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

câu g) 

\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)

\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)

\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)

\(=\frac{12}{3}=4\)

14 tháng 8 2017

câu mình trả lời sai rồi thông cảm

7 tháng 12 2016

B= 333300

C=328350

D=(n+1) /( n nhân 2)

E=(1/3 trừ 1/3^100):2

7 tháng 12 2016

1)=>3B=1.2.3+2.3.3+3.4.3+...+99.100.3

3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)

3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

3B=99.100.101

=>B=333300

 

Bài 1 : Thực hiện phép tính(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)Bài 2 : Tìm x biết(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot...
Đọc tiếp

Bài 1 : Thực hiện phép tính

(1) D = \(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{16}\left(1+2+...+16\right)\)

(2) M =\(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)

Bài 2 : Tìm x biết

(1) \(x-\left\{x-\left[x-\left(-x+1\right)\right]\right\}=1\)

(2) \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right]\cdot x=\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)

(3) \(\frac{x}{\left(a+5\right)\left(4-a\right)}=\frac{1}{a+5}+\frac{1}{4-a}\)

(4) \(\frac{x+2}{11}+\frac{x+2}{12}+\frac{x+2}{13}=\frac{x+2}{14}+\frac{x+2}{15}\)

(5) \(\frac{x+1}{2015}+\frac{x+2}{2014}+\frac{x+3}{2013}+\frac{x+4}{2012}+4=0\)

Bài 3 : 

(1) Cho : A =\(\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}\); B =\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\)

CMR : \(\frac{A}{B}\)Là 1 số nguyên

(2) Cho : D =\(\frac{1}{1001}+\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2000}\)CMR : \(D< \frac{3}{4}\)

Bài 4 : Ký hiệu [x] là số nguyên lớn nhất không vượt quá x , gọi là phần nguyên của x.

VD : [1.5] =1 ; [3] =3 ; [-3.5] = -4

(1) Tính :\(\left[\frac{100}{3}\right]+\left[\frac{100}{3^2}\right]+\left[\frac{100}{3^3}\right]+\left[\frac{100}{3^4}\right]\)

(2) So sánh : A =\(\left[X\right]+\left[X+\frac{1}{5}\right]+\left[X+\frac{2}{5}\right]+\left[X+\frac{3}{5}\right]+\left[X+\frac{4}{5}\right]\)và B = [5x]. Biết x=3.7

0
22 tháng 2 2020

C = \(25.\left(\frac{-1}{3}\right)^3\) \(+\frac{1}{5}\) \(-2.\left(\frac{-1}{2}\right)^2\) \(-\frac{1}{2}\)

C = \(25.\left(\frac{-1}{27}\right)+\frac{1}{5}\) \(-2.\frac{1}{4}\) \(-\frac{1}{2}\)

C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-\frac{1}{2}\) \(-\frac{1}{2}\)

C = \(\frac{-25}{27}\) \(+\frac{1}{5}\) \(-1\)

C = \(\frac{-125}{135}\) \(+\frac{27}{135}\) \(-\frac{135}{135}\)

C = \(\frac{-233}{135}\)

D =  \(-8.\left(\frac{3}{4}-\frac{1}{4}\right):\left(\frac{9}{4}-\frac{7}{6}\right)\)

D = \(-8.\frac{1}{2}\) \(.\frac{12}{13}\)

D = \(-4.\frac{12}{13}\)

D = \(\frac{-48}{13}\)

E = \(5\sqrt{16}\) \(-4\sqrt{9}\) \(+\sqrt{25}\) \(-0,3\sqrt{400}\)

E = \(5.4-4.3+5-0,3.20\)

E = \(20-12+5-6\)

E = \(8+\left(-1\right)\)

E = \(7\)

F = \(\left(\frac{-3}{2}\right)\) \(+\left|\frac{-5}{6}\right|\) \(-1\frac{1}{2}\) \(:6\)

F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{3}{2}\) \(.\frac{1}{6}\)

F = \(\left(\frac{-3}{2}\right)\) \(+\frac{5}{6}\) \(-\frac{1}{4}\) 

F = \(\left(\frac{-18}{12}\right)\) \(+\frac{10}{12}\) \(-\frac{3}{12}\)

F = \(\frac{-11}{12}\)

 Chúc cậu hk tốt ~ 

5 tháng 1 2016

C=84

2B=1-1/3^2015

A=125/216

14 tháng 5 2016

Ta có: F= (100-12) (100-22)...(100-252)

    =>  F= (100-12)...(100-102)...(100-252)

    =>  F= (100-12)...0...(100-252)

    =>  F= 0

Vậy F= 0

26 tháng 10 2015

đang bận làm để thông cảm nha có j kiếm lại chất xám mình giải cho

31 tháng 7 2019

Đề câu C sai nhé, sửa: ... < 1/2

\(C=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\\ 3C=1+\frac{1}{3}+...+\frac{1}{3^{98}}\\ 3C-C=1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{99}}\\ 2C=1-\frac{1}{3^{99}}\\ C=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\left(đpcm\right)\)

Đề câu D sai nhé, sửa: ... > -1/2

\(D=\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot\left(\frac{1}{4^2}-1\right)\cdot...\cdot\left(\frac{1}{100^2}-1\right)< \left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)

Mặt khác \(\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\\ =\frac{-1}{2}\cdot\frac{-2}{3}\cdot\frac{-3}{4}\cdot...\cdot\frac{-99}{100}\\ =-\left(\frac{1\cdot2\cdot3\cdot...\cdot99}{2\cdot3\cdot4\cdot...\cdot100}\right)\\ =\frac{-1}{100}\)

\(\frac{1}{100}< \frac{1}{2}\Rightarrow\frac{-1}{100}>\frac{-1}{2}\)

Vậy \(D< \frac{-1}{2}\left(đpcm\right)\)

2 tháng 8 2019

Cảm ơn bạn nhiều nhé.hehe