Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow\) \(x+y+z=\frac{xy+yz+xz}{xyz}\)
\(\Leftrightarrow\) \(x+y+z=xy+yz+xz\) ( do \(xyz=1\) )
\(\Leftrightarrow\) \(x+y+z-xy-yz-xz=0\)
\(\Leftrightarrow\) \(xyz-xy-yz-xz+x+y+z-1=0\)
\(\Leftrightarrow\) \(xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+z-1=0\)
\(\Leftrightarrow\) \(\left(z-1\right)\left(xy-y-x+1\right)=0\)
\(\Leftrightarrow\) \(\left(x-1\right)\left(y-1\right)\left(z-1\right)=0\)
\(\Leftrightarrow\) \(x=1\) hoặc \(y=1\) hoặc \(z=1\)
+) Với \(x=1\) thì \(P=\left(1^{19}-1\right)\left(y^5-1\right)\left(z^{1896}-1\right)=0\)
Tương tự với \(y=1\) \(;\) \(z=1\) , ta cũng có \(P=0\)
A=(\(\frac{1}{X^3}\)+x3)+(\(\frac{1}{y^3}\)+y3)+(\(\frac{1}{z^3}\)+z3)+3
Áp dung bđt AM-GM(Cosi) cho hai số dương lần lượt ta đc
A>=6khi x=1,y1,z=1
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
tôi bt làm 1 câu à mấy câu kia khó quá *-*
1. 5x2+4x-2=0
\(\Leftrightarrow x\left(5x+4\right)=2\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\5x+4=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{5}\end{cases}}}\)
\(\Rightarrow\) Nghiệm pt là :\(S=\left\{\frac{-2}{5};2\right\}\)
chúc bn sớm làm dc bài này ha
khó quá Ngọc Anh
cái này mk thấy khó nhá