Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
Đặt: x2+5x+4=t
Ta có:
\(t\left(t+2\right)-120=t^2+2t-120=t^2+12t-10t-120=t\left(t+12\right)-10\left(t+12\right)\)
\(=\left(t+12\right)\left(t-10\right)=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)
PTĐTTNT?
1.Đặt \(a^2+a=t\)
\(\Rightarrow\left(a^2+a\right)\left(a^2+a+1\right)-2\)
\(=t\left(t+1\right)-2\)
\(=t^2+t-2\)
\(=t^2+2t-\left(t+2\right)\)
\(=t\left(t+2\right)-\left(t+2\right)\)
\(=\left(t+2\right)\left(t-1\right)\)
Sửa đề:
\(x^4+2011x^2+2010x+2011\)
\(=\left(x^4-x\right)+2011x^2+2011x+2011\)
\(=x\left(x^3-1\right)+2011\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2011\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2011\right)\)
3. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)
\(=t\left(t+2\right)-120\)
\(=t^2+2t+1-121\)
\(=\left(t+1\right)^2-11^2\)
\(=\left(t+1-11\right)\left(t+1+11\right)\)
\(=\left(t-10\right)\left(t+12\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+16\right)\)
\(=\left[\left(x^2-x\right)+\left(6x-6\right)\right]\left(x^2+5x+16\right)\)
\(=\left[x.\left(x-1\right)+6\left(x-1\right)\right]\left(x^2+5x+16\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x^2+5x+16\right)\)
4. \(\left(x^2+x+4\right)^2+8x\left(x^2+x+1\right)+15x^2\)
\(=\left(x^2+x+4\right)^2+2.\left(x^2+x+1\right).4x+\left(4x\right)^2-x^2\)
\(=\left(x^2+x+4+4x\right)^2-x^2\)
\(=\left(x^2+4+5x-x\right)\left(x^2+5x+x+4\right)\)
\(=\left(x^2+4x+4\right)\left(x^2+6x+4\right)\)
\(=\left(x+2\right)^2\left[\left(x^2+2.x.3+3^2\right)-\left(\sqrt{5}\right)^2\right]\)
\(=\left(x+2\right)^2\left[\left(x+3\right)^2-\left(\sqrt{5}\right)^2\right]\)
\(=\left(x+2\right)^2\left(x+3-\sqrt{5}\right)\left(x+3+\sqrt{5}\right)\)
\(1.x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)
\(2.a^2x^2+axyz-ax^2z-a^2xy\)
\(=ax\left(ax+yz-xz-ay\right)\)
\(=ax\left[x\left(a-z\right)-y\left(a-z\right)\right]\)
\(=ax\left(x-y\right)\left(a-z\right)\)