Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x:(-12/5)=2/3=>x=2/3*(-12/5)=-8/5=-1,6
2.x=14/2*(3^2-2)+6
x=7*7+6=55
****
a) Thiếu đề (hoặc sai)
b) x đâu?
c)\(3x-1=x+2\)
\(\Rightarrow3x-x=2+1\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
c) \(\frac{x+2}{5}=\frac{2-3x}{3}\)
\(\Rightarrow3.\left(x+2\right)=5.\left(2-3x\right)\)
\(\Rightarrow3x+6=10-15x\)
\(\Rightarrow3x+15x=10-6\)
\(\Rightarrow18x=4\)
\(\Rightarrow x=\frac{4}{18}=\frac{2}{9}\)
câu 1 là \(x\times\left(4.6+\frac{3}{5}\right)=7.2-8.15\)
câu 2 là \(42+\frac{3}{7}.\left[3\times x-1=12\right]\)
\(4^{x+1}.2=32\)
\(4^{x+1}=32:2\)
\(4^{x+1}=16\)
\(4^{x+1}=4^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
vậy \(x=1\)
\(\left(x-\frac{2}{3}\right)^2=\frac{25}{81}\)
\(\left(x-\frac{2}{3}\right)^2=\left(\frac{5}{9}\right)^2\)
\(\Rightarrow x-\frac{2}{3}=\frac{5}{9}\)
\(\Rightarrow x=\frac{11}{9}\)
vậy \(x=\frac{11}{9}\)
\(500^{300}=\left(500^3\right)^{100}=125000000^{100}\)
\(300^{500}=\left(300^5\right)^{100}\)
vì \(\left(500^3\right)^{100}< \left(300^3\right)^{100}\)nên\(500^{300}< 300^{500}\)
\(4^{45}=\left(4^9\right)^5=262144^5\)
\(3^{60}=\left(3^{12}\right)^5=531441^5\)
vì \(262144^5< 531441^5\) nên \(4^{45}< 3^{60}\)
\(\text{1. Ta có hai trường hợp :}\)
\(\text{ TH1 : 3x = 0}=>x=0.\)
\(\text{ TH2 : x -}\frac{1}{2}=2=>x=\frac{5}{2}.\)
\(\text{Vậy x = 0 , x = }\frac{5}{2}.\)
\(1,\)\(3x\left(x-\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
\(2,\)\(\left(\frac{4}{3}+\frac{2}{5}\right)-x=\frac{1}{2}+\frac{1}{3}\)
\(\Rightarrow x=\frac{4}{3}+\frac{2}{5}-\frac{1}{2}-\frac{1}{3}\)
\(\Rightarrow x=1+\frac{4}{10}-\frac{5}{10}=1-\frac{1}{10}=\frac{9}{10}\)
Bài 1:
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+1986}\right)\)
Nhận xét: \(1-\frac{1}{1+2+...+n}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó: \(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+...+1986}\right)\)
\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{1985\cdot1988}{1986\cdot1987}=\frac{1\cdot4\cdot1988}{1986\cdot3}=\frac{3976}{2979}\)
Bài 2:
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^x\)
\(\Rightarrow\frac{4\cdot4^5}{3\cdot3^5}\cdot\frac{6\cdot6^5}{2\cdot2^5}=2^x\)\(\Rightarrow\frac{4^6}{3^6}\cdot\frac{6^6}{2^6}=2^x\)
\(\Rightarrow\frac{\left(2^2\right)^6}{3^6}\cdot\frac{\left(2\cdot3\right)^6}{2^6}=2^x\)\(\Rightarrow\frac{2^{12}}{3^6}\cdot\frac{2^6\cdot3^6}{2^6}=2^x\)
\(\Rightarrow\frac{2^6\cdot3^6\cdot2^{12}}{2^6\cdot3^6}=2^x\)\(\Rightarrow2^{12}=2^x\Rightarrow x=12\)
1.....
2....
3.Ok
a) \(x^2-2=\frac{1}{4}\)
\(\Rightarrow x^2=\frac{1}{4}+2\)
\(\Rightarrow x^2=\frac{9}{4}=2,25=1,5^2\)
\(\Rightarrow x=1,5\)
b) \(-\frac{3}{2}.\left(\frac{4}{5}+x\right)=1\frac{3}{2}\)
\(\Rightarrow-\frac{3}{2}.\left(\frac{4}{5}+x\right)=\frac{5}{2}\)
\(\Rightarrow\frac{4}{5}+x=\frac{5}{2}:-\frac{3}{2}\)
\(\Rightarrow\frac{4}{5}+x=-\frac{5}{3}\)
\(\Rightarrow x=-\frac{5}{3}-\frac{4}{5}\)
\(\Rightarrow x=-\frac{37}{15}\)