Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp B
tính được landa= 2 cm
vì M và O cùng pha nên ta có:
d(M) - d(O) = K .landa
=> d(M) = 2K + 9
để M gần O nhất thì => k=1 ( k # 0 vì trùng vs trung điểm AB)
=> d(M) = 11
=> OM = căn ( d(M)binh - d(O)binh) = 2căn10 (cm)
\(\lambda = v/f = 80/20 = 4cm.\)
\(\triangle \varphi = \pi-0=\pi.\)
Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)
MO = 2 10 . Xem hình II.4G
Pha dao động tại O ở thời điểm t là :
Pha dao động tại M ở thời điểm t là :
AM = 11cm ⇒ MO = 2 10 cm
Đáp án C
+ Bước sóng của sóng λ = 2 π v ω = 5 c m
+ Số dãy cực đại giao thoa
Có 7 dãy cực đại ứng với
+ Điều kiện để M cực đại và cùng pha với hai nguồn:
\(\lambda =\frac{v}{f}=\frac{50}{10}=5cm.\)
Điểm M ngược pha với điểm I khi: \(\triangle \phi=\phi_I-\phi_M = 2\pi \frac{d_1-d_{1}^{'}}{\lambda}=(2k+1)\pi \Rightarrow d_1-d_1^{'}=(2k+1)\frac{\lambda}{2}\)
Để điểm M gần I nhất thì hiệu d1 - d1' cũng phải nhỏ nhất khi đó k chỉ nhận giá trị nhỏ nhất là k = 0.
\(d_{1}-d_{1}^{'}=(2.0+1)\frac{5}{2}=2.5cm\Rightarrow d_1 = 7.5cm.\)
\(\Rightarrow MI= \sqrt {d_1^{2}-d_1^{'2}}\) = \(\sqrt{7.5^2-2.5^2}=\sqrt{50}cm\)
Đáp án: B
HD Giải: λ = 50 2 π 50 π = 2cm
từ phương trình sóng tại M và O ta có điều kiện để M và O đồng pha là:
M gần O nhất nên k = 1, ta có
=> d = 11cm