Ở điều kiện thường, kim loại nào sau đây ở trạng thái lỏng?

A. Zn....">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2016

gọi hidrocacacbon là CxHy

phương trình: CxHy +(2x+y/2)​O2 -> xCO2 +y/2 H2O ta có: nCO2: nH2O =2:1 nên x :y/2 = 2:1 => x=y. vì là chất lỏng nên đó là benzem C6H6

30 tháng 4 2022

sao không phải là C5H5 , cũng là chất lỏng mà 

 

13 tháng 11 2015

Các phương trình phản ứng có thể xảy ra như sau:

Al   +   3AgNO3 \(\rightarrow\) Al(NO3)3 + 3Ag (1)

0,1/3    0,1 mol

2Al(dư) + 3Cu(NO3)2 \(\rightarrow\) 2Al(NO3)3 + 3Cu (2)

0,2/3        0,1 mol

Zn + Cu(NO3)2 (dư) \(\rightarrow\) Zn(NO3)2 + Cu (3)

0,1     0,1 mol

10 tháng 4 2016
Tính mol các chất bđ \(Fe=0,2mol\)\(Cu=0,1mol\);\(Zn=0,3mol\)
\(Fe\rightarrow Fe+2\)    + 2e
\(Cu\rightarrow Cu+2\)   + 2e
\(Zn\rightarrow Zn+2\)   + 2e
3 KL đều nhường 2e số mol e nhường=2số mol bđ=2.0,6=1,2 mol \(S\) cũng nhận 2e nên số mol \(S-2=0,3mol\)= số mol PbSPbS= mol \(Pb\left(NO_3\right)_2\)\(\Rightarrow\)\(m_{Pb\left(NO_3\right)_2}\)=99,3g\(\Rightarrow\)mdd=496,5g\(\Rightarrow\)Vdd=451,364ml
12 tháng 4 2016

quá khủng

1. axetilen( ankin), benzen( hidrocacbon mạch vòng), ruou etylic ( ancol), axit axetic( axit cacboxylic), glucozo(cacbohidrat), etyl axetat( este), etilen( anken)

2.

a, qùy tím, nước vôi trong, dd brom

b, quỳ tím, nước vôi trong, và bạc

c,quỳ tím, nước vôi trong, cuso4 khan, kmno4

d,quỳ tím, brom, cuo

e, brom,quỳ tím,na

g, Cu(OH)2, đốt.

29 tháng 3 2016

- Từ dung dịch AgNO3 có 3 cách để điều chế Ag:

+ Dùng kim loại có tính khử mạnh hơn để khử ion Ag+.

            Cu + 2 AgNO3 → Cu(NO3)2 + 2Ag

+ Điện phân dung dịch AgNO3:

            4AgNO3 + 2H2 4Ag + O2 + 4HNO3

+ Cô cạn dung dịch rồi nhiệt phân AgNO3:

           2AgNO3  2Ag + 2NO2 + O2

- Từ dung dịch MgCl2 điều chế Mg: chỉ có một cách là cô cạn dung dịch để lấy MgCl2 khan rồi điện phân nóng chảy:

          MgCl2  Mg + Cl2

 

29 tháng 3 2016
* Từ  AgNO3 có 3 cách điều chế kim loại Ag
+ Khử bằng kim loại có tính khử mạnh
\(Cu+2AgNO_3\rightarrow Cu\left(NO_3\right)_2+Ag\)
+  Điện phân dung dịch

\(4AgNO_3+2H_2O\) \(\underrightarrow{dpdd}\) \(4Ag+O_2\uparrow+4HNO_3\)
+ Cô cạn dung dịch rồi nhiệt phân

\(2AgNO_3\) \(\underrightarrow{t^o}\) \(2Ag+2NO_2+O_2\)
* Từ dung dịch MgCl2 điều chế Mg chỉ có 1 cách là cô cạn dung dịch sau đó điện phân nóng chảy

\(MgCl_2\) \(\underrightarrow{dpnc}\) \(Mg+Cl_2\)
 
 
5 tháng 4 2016

Cùng điều kiện nhiệt độ về ấp suất nhiệt độ thì cùng tỉ lệ về số mol
m CO2 : m H2O = 44:9  n CO2 : n H2O = 1:0,5
 n O ( trong CO2) : n O ( trong H2O) = 2 : 0,5 = 4(I)

 

+)  nO2 pư = 10 mol = n O (trong CO2) + n O ( trong H2O) (II)
=>
n O (trong CO2) = 16 mol
n O ( trong H2O) = 4 mol
 n CO2 = 8 mol; n H2O = 4 mol
 nC : nH= 8:8
 A là C8H8

17 tháng 12 2014

Thầy rất hoan nghênh bạn Thịnh đã trả lời câu hỏi 2, nhưng câu này em làm chưa đúng. Ở bài này các em cần phải vận dụng phương trình BET để tính diện tích bề mặt riêng:

Sr = (Vm/22,4).NA.So. Sau khi thay số các em sẽ ra được đáp số.

17 tháng 12 2014

E làm thế này đúng không ạ?

n(N2)=PV/RT=1*129*10^-3/(0.082*273)=5.76*10^-3 (mol)

Độ hấp phụ: S=n(N2)/m=5.76*10^-3/1=5.76*10^-3 (mol/g)

Diện tích bề mặt silicagel: S=N*So*J=6.023*10^23*16.2*10^-20*5.76*10^-3=562(m2/g)

8 tháng 3 2016

Mol \(Fe_2O_3\) bđ=16/160=0,1 mol

Mol \(H_2\) =3/22,4 mol
\(Fe_2O_3\) +3\(H_2\) \(\rightarrow\)2\(Fe\) +3\(H_2O\)
Bđ: 0,1 mol
Pứ: 15/224 mol<=45/112 mol                            3/22,4 mol
Dư: 0,033 mol
\(Fe\) + 2\(HCl\) \(\rightarrow\) \(FeCl_2+H_2\)
3/22,4 mol<=                                            3/22,4 mol
Lập tỉ lệ mol \(Fe_2O_3\) và \(H_2\) lần lượt với hệ số trong pt=> tính H% theo \(Fe_2O_3\)
H%=(15/224)/0,1 .100%=66,96%

phương trình dạng toán tử :  \(\widehat{H}\)\(\Psi\) = E\(\Psi\)

Toán tử Laplace: \(\bigtriangledown\)2 = \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\)

thay vào từng bài cụ thể ta có :

a.sin(x+y+z)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))sin(x+y+z)

                =\(\frac{\partial^2}{\partial x^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial y^2}\)sin(x+y+z) + \(\frac{\partial^2}{\partial z^2}\)sin(x+y+z)

                =\(\frac{\partial}{\partial x}\)cos(x+y+z) + \(\frac{\partial}{\partial y}\)cos(x+y+z) + \(\frac{\partial}{\partial z}\)cos(x+y+z)

                = -3.sin(x+y+z)

\(\Rightarrow\) sin(x+y+z) là hàm riêng. với trị riêng bằng -3.

b.cos(xy+yz+zx)

\(\bigtriangledown\)f(x,y,z) = ( \(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)+\(\frac{\partial^2}{\partial z^2}\))cos(xy+yz+zx)

                =\(\frac{\partial^2}{\partial x^2}\)cos(xy+yz+zx) +\(\frac{\partial^2}{\partial y^2}\)cos(xy+yz+zx) + \(\frac{\partial^2}{\partial z^2}\)cos(xy+yz+zx)

                =\(\frac{\partial}{\partial x}\)(y+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial y}\)(x+z).-sin(xy+yz+zx) + \(\frac{\partial}{\partial z}\)(y+x).-sin(xy+yz+zx)

                =- ((y+z)2cos(xy+yz+zx) + (x+z)2cos(xy+yz+zx) + (y+x)2cos(xy+yz+zx))

                =-((y+z)2+ (x+z)2 + (x+z)2).cos(xy+yz+zx)

\(\Rightarrow\) cos(xy+yz+zx) không là hàm riêng của toán tử laplace.

c.exp(x2+y2+z2)

\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))exp(x2+y2+z2)
                =\(\frac{\partial^2}{\partial x^2}\)exp(x2+y2+z2)+\(\frac{\partial^2}{\partial y^2}\)exp(x2+y2+z2) +\(\frac{\partial^2}{\partial z^2}\)exp(x2+y2+z2)
                =\(\frac{\partial}{\partial x}\)2x.exp(x2+y2+z2)+\(\frac{\partial}{\partial y}\)2y.exp(x2+y2+z2)+\(\frac{\partial}{\partial z}\)2z.exp(x2+y2+z2)
                =2.exp(x2+y2+z2) +4x2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4y2.exp(x2+y2+z2)+2.exp(x2+y2+z2) +4z2.exp(x2+y2+z2)
                =(6+4x2+4y2+4z2).exp(x2+y2+z2)
\(\Rightarrow\)exp(x2+y2+z2không là hàm riêng của hàm laplace.
d.ln(xyz)
\(\bigtriangledown\)f(x,y,z) = (\(\frac{\partial^2}{\partial x^2}\)\(\frac{\partial^2}{\partial y^2}\)\(\frac{\partial^2}{\partial z^2}\))ln(xyz)
                =\(\frac{\partial^2}{\partial x^2}\)ln(xyz)+\(\frac{\partial^2}{\partial y^2}\)ln(xyz)+\(\frac{\partial^2}{\partial z^2}\)ln(x+y+z)
                =\(\frac{\partial}{\partial x}\)yz.\(\frac{1}{xyz}\)\(\frac{\partial}{\partial y}\)xz.\(\frac{1}{xyz}\) + \(\frac{\partial}{\partial z}\)xy.\(\frac{1}{xyz}\)
                =\(\frac{\partial}{\partial x}\)\(\frac{1}{x}\) + \(\frac{\partial}{\partial y}\)\(\frac{1}{y}\)+\(\frac{\partial}{\partial z}\)\(\frac{1}{z}\)
                = - \(\frac{1}{x^2}\)\(\frac{1}{y^2}\)\(\frac{1}{z^2}\)
\(\Rightarrow\) ln(xyz) không là hàm riêng của hàm laplace.
 
 
14 tháng 1 2015

đáp án D