\(a^{2016}+b^{2016}\le1,x^{2016}+y^{2016}\le1\)

Cmr:...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

BĐT tương đương với: 

\(x+y+z+xy+yz+zx+1\ge3xyz\)

hay : \(7+z\left(6-z\right)+xy\left(1-3z\right)\ge0\)

Vì \(x\le1;y\le2\)nên \(z\ge3\), tức là \(1-3z< 0;3z-5>0\)

Áp dụng BĐT AM-GM, ta có:

\(xy=\frac{1}{2}.2x.y\le\frac{\left(2x+y\right)^2}{8}\le\frac{\left(1+x+y\right)^2}{8}=\frac{\left(7-z\right)^2}{8}\)

Do đó: \(7+z\left(6-z\right)+xy\left(1-3z\right)\ge7+z\left(6-z\right)+\frac{\left(7-z\right)^2}{8}\left(1-3z\right)\)

\(=\frac{1}{8}\left(z-3\right)\left(7-z\right)\left(3z-5\right)=\frac{1}{8}\left(z-3\right)\left(1+x+y\right)\left(3z-5\right)\ge0\)

Đẳng thức xảy ra khi và chỉ khi x=1,y=2,z=3

30 tháng 11 2017

sky oi say oh yeah

NV
21 tháng 5 2019

\(2\sqrt{xy}\le x+y\le1\Rightarrow\sqrt{xy}\le\frac{1}{2}\Rightarrow xy\le\frac{1}{4}\Rightarrow\frac{1}{xy}\ge4\)

\(A=xy+\frac{1}{xy}=xy+\frac{1}{16xy}+\frac{15}{16xy}\ge2\sqrt{\frac{xy}{16xy}}+\frac{15}{16}.4=\frac{17}{4}\)

\(\Rightarrow A_{min}=\frac{17}{4}\) khi \(x=y=\frac{1}{2}\)

b/ \(2y=xy-x=x\left(y-1\right)\Rightarrow x=\frac{2y}{y-1}=2+\frac{2}{y-1}\)

Đồng thời \(x;y>0\Rightarrow2y=x\left(y-1\right)>0\Rightarrow y-1>0\)

\(\Rightarrow S=2+\frac{2}{y-1}+2y=4+\frac{2}{y-1}+2\left(y-1\right)\ge4+2\sqrt{\frac{4\left(y-1\right)}{y-1}}=8\)

\(\Rightarrow S_{min}=8\) khi \(\frac{2}{y-1}=2\left(y-1\right)\Rightarrow y=2\Rightarrow x=4\)

NV
21 tháng 5 2019

c/ \(x+y+xy\ge7\Leftrightarrow x\left(y+1\right)\ge7-y\Leftrightarrow x\ge\frac{7-y}{y+1}=\frac{8}{y+1}-1\)

\(\Rightarrow S=x+2y\ge2y+\frac{8}{y+1}-1=2\left(y+1\right)+\frac{8}{y+1}-3\)

\(\Rightarrow S\ge2\sqrt{\frac{16\left(y+1\right)}{y+1}}-3=5\)

\(\Rightarrow S_{min}=5\) khi \(\left\{{}\begin{matrix}y=1\\x=5\end{matrix}\right.\)

19 tháng 8 2019

2.

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+9^2\right)\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow82\cdot\left(x^2+\frac{1}{x^2}\right)\ge\left(x+\frac{9}{x}\right)^2\)

\(\Leftrightarrow\sqrt{82}\cdot\sqrt{x^2+\frac{1}{x^2}}\ge x+\frac{9}{x}\)

Tương tự ta cũng có :

\(\sqrt{82}\cdot\sqrt{y^2+\frac{1}{y^2}}\ge y+\frac{9}{y}\)

\(\sqrt{82}\cdot\sqrt{z^2+\frac{1}{z^2}}\ge z+\frac{9}{z}\)

Cộng theo vế của các bất đẳng thức ta được :

\(\sqrt{82}\cdot\left(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\right)\ge x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\)

\(\Leftrightarrow\sqrt{82}\cdot P\ge x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}\)(1)

Mặt khác áp dụng bất đẳng thức Cauchy ta có :

\(x+\frac{9}{x}+y+\frac{9}{y}+z+\frac{9}{z}=81x+\frac{9}{x}+81y+\frac{9}{y}+81z+\frac{9}{z}-80x-80y-80z\)

\(\ge2\sqrt{\frac{81x\cdot9}{x}}+2\sqrt{\frac{81y\cdot9}{y}}+2\sqrt{\frac{81z\cdot9}{z}}-80\left(x+y+z\right)\)

\(\ge2\sqrt{729}+2\sqrt{729}+2\sqrt{729}-80\cdot1\)

\(=82\) (2)

Từ (1) và (2) suy ra \(\sqrt{82}\cdot P\ge82\)

\(\Leftrightarrow P\ge\sqrt{82}\) ( đpcm )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{3}\)

19 tháng 8 2019

1.

Áp dụng bất đẳng thức Cauchy :

\(\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)

\(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)

\(=9a+\frac{1}{a}+9b+\frac{1}{b}+9c+\frac{1}{c}-8a-8b-8c\)

\(\ge2\sqrt{\frac{9a}{a}}+2\sqrt{\frac{9b}{b}}+2\sqrt{\frac{9c}{c}}-8\left(a+b+c\right)\)

\(\ge3\cdot2\sqrt{9}-8=10\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

7 tháng 9 2016

Bài 1:

a) Để x là số âm <=>x<0

<=> \(\frac{a-4}{7}< 0\Leftrightarrow a-4< 0\Leftrightarrow a< 4\)

b) Để x là số dương <=> x>0

<=> \(\frac{a-4}{7}>0\Leftrightarrow a-4>0\Leftrightarrow a>4\)

c) x k phải là số âm k phải là số dương <=>x=0

<=> \(\frac{a-4}{7}=0\Leftrightarrow a-4=0\Leftrightarrow a=4\)

 

 

8 tháng 9 2016

mk thanks bn nhìu lắm nha @@ok

17 tháng 5 2016

Giải:

Ta có: x, y, z >0

Áp dụng BĐT Cô si ta có:

\(\left(x+y\right)\ge2\sqrt{xy}\) và \(\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{1}{xy}}\)

=> \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{xy}.2\sqrt{\frac{1}{xy}}=4\)

<=> \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x+y}\le4\left(\frac{1}{x}+\frac{1}{y}\right)\)               (*)

Áp dụng (*) ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}=\frac{1}{\left(x+y\right)+\left(x+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\)        (1)

\(\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}=\frac{1}{\left(x+y\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)\)        (2)

\(\frac{1}{x+y+2z}=\frac{1}{x+z+y+z}=\frac{1}{\left(x+z\right)+\left(y+z\right)}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{z}+\frac{1}{y}+\frac{1}{z}\right)\)        (3)

Cộng 2 vế của (1), (2), (3) ta có

\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) (đpcm)
 

4 tháng 11 2016

cảm ơn bạn nhiều