![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
cái tên dc của nó cái tên bạn có tính cách giống mik
với mik chịu chx làm dc bài này sr nhé
mx lớp 5 chx lớp 7 nên ko làm dc :))
a, +)Xét ΔBCNΔBCN và ΔAENΔAEN có:
NC= NE (GT)
ˆBNC=ˆANEBNC^=ANE^ ( đối đỉnh)
BN=NA (GT)
⇒ΔBCN=ΔAEN⇒ΔBCN=ΔAEN (c-g-c)
b, Theo câu a, ta có ΔBCN=ΔAENΔBCN=ΔAEN
=> BC=AE (2 cạnh tương ứng) (1)
c, Xét ΔADM=ΔCBMΔADM=ΔCBMcó
AM=BM (gt)
ˆAMD=ˆCMBAMD^=CMB^ (đối đỉnh)
DM=BM (gt)
⇒ΔADM=ΔCBM⇒ΔADM=ΔCBM
=> AD= BC ( 2 cạnh tương ứng) (2)
Từ (1) và (2) => AD= AE
c, Theo câu a, ta có ΔBCN=ΔAENΔBCN=ΔAEN
=>ˆCBN=ˆEANCBN^=EAN^( 2 góc tương ứng)
Mà 2 góc này ở vị trí SLT => AE//BC (*1)
Theo câu b ta có ΔADM=ΔCBMΔADM=ΔCBM
=> ˆADM=ˆCBMADM^=CBM^ ( 2 goc t/ứ)
Mà 2 góc này ở vị trí SLT => AD//BC (*2)
Từ (*1) và (*2) => E, A, D thẳng hàng (theo tiên đề Ơ- clic)
Mở rộng thêm nha
Từ E, A ,D thẳng hàng =>A nằm giữa E và D ( vs kiến thưc lp 7 thì suy a luôn v)
Kết hợp vs cả cái AE= AD => A là trung điểm của DE
![](https://rs.olm.vn/images/avt/0.png?1311)
a) D nằm trên đường trung trực của AB nên DA = DB
=> tam giác DAB cân ở D
=> goc BAD = góc ABD
Tam giác ABC cân tại A, góc A = 40 độ nên góc ABD = (180 - 40)/2 = 70 độ
góc A nhỏ hơn góc ABC trong tam giác ABC nên trung trực của AB sẽ cắt BC bên ngoài đoạn thẳng BC
hay C nằm giữa A và D.
hay góc CAD = BAD - BAC = 70 - 40 = 30 độ
b) Tam giác có góc ACB=70 độ (theo a)
=> góc ACD= 180 độ- 70 độ= 110 độ (góc kề bù,) (1)
ta có góc BAC=70 độ (tam giác DAB cân tại D)
=> góc BAM= 110 độ (kề bù) (2)
Từ (1) và (2)=> góc BAM= góc ACD
mà AC=AB (tam giác cân)
AM = CD (gt)
=> tam giác ABM= tam giác CAD (c.g.c)
=> Góc DMB= góc MDB (góc tương ứng)
=> tam giác BMD cân tại B.
giải rùi ,tui ko cần tiền ,tui chỉ cần k
![](https://rs.olm.vn/images/avt/0.png?1311)
Hướng chứng mình là 3a2 + a vừa chia hết cho 2, vừa chi hết cho 3.
Xét a là số chẵn:
3a2 là số chẵn
=> 3a2 + a là số chẵn => 3a2 + a chia hết cho 2
Xét a là số lẽ:
3a2 là số lẽ
=> 3a2 + a là số chẵn => 3a2 + a chia hết cho 2
=> 3a2 + a luôn chia hết cho 2.
Tuy nhiên, 3a2 + a không phải luôn luôn chia hết cho 3 (Chỉ chia hết cho 3 khi a chia hết cho 3)
Ví dụ a = 1, 2 thì 3a2 + a = 4, 14 không chi hết cho 3.
Vậy, 3a2 + a không phải luôn luôn chia hết cho 6.
3a2 + a chỉ chia hết cho 6 khi a chia hết cho 3.
bạn chép cả đề bài ra đi mình giải cho
Chứng minh tam giác NCM và tam giác MBA