Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
h.
n3+ 3n2 -n - 3
= n( n2 -1) + 3( n2 - 1)
= ( n +3)( n2 - 1)
= ( n +3)( n -1)( n +1)
Do n là số nguyên lẻ. Đặt : 2k + 1 = n . Ta có :
( 2k+ 4)2k( 2k +2)
= 2( k + 2)2k . 2( k+ 1)
= 8k( k +1)( k +2)
Do : k ; k+1; k+2 là 3 STN liên tiếp
--> k( k +1).(k+ 2) chia hết cho 6
-->8k( k +1).(k+ 2) chia hết cho 48 với mọi n là số nguyên lẻ
a)A = n^3-3n^2-n+3 = n^2(n - 3) - (n-3) = (n -3)(n-1)(n+1)
vì n lẻ nên:
(n-1)(n+1) là tích của 2 số chẵn liên tiếp chia hết cho 8
(n - 3) là số chẵn chia hết cho 2
=> A chia hết cho 16(*)
mặt khác:
A = n^3-3n^2-n+3 = n^3 - n - 3(n^2 - 1) = n(n+1)(n-1) - 3(n^2-1)
xét các trường hợp:
n = 3k => n(n+1)(n-1) chia hết cho 3 => A chia hết cho 3
n = 3k + 1 => (n -1) chia hết cho 3 => A chia hết cho 3
n = 3k + 2 => (n+1) = 3k + 3 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 (**)
(*) và (**) => A chia hết cho 3.16 = 48 (3,16 là 2 số nguyên tố cùng nhau).
b)A =n^12-n^8-n^4+1
=(n^8-1)(n^4-1)=(n^4+1)(n^4-1)^2
=(n^4+1)[(n^2+1)(n^2-1)]^2
=(n-1)^2*(n+1)^2*(n^2+1)^2*(n^4+1)
Ta có n-1 và n+1 là 2 số chẵn liên tiếp nên có 1 số chỉ chia hết cho 2 ,1 số chia hết cho 4 nên (n-1)(n+1) chia hết cho 8 => (n-1)^2*(n+1)^2 chia hết cho 64
Mặt khác n lẻ nên n^2+1,n^4+1 cũng là số chẵn nên (n^2+1)^2*(n^4+1) chia hết cho 2^3=8
Do đó : A chia hết cho 64*8=512
a, \(n^2+2n-4=n^2+2n-15+11=\left(n-3\right)\left(n-5\right)+11\)
Để \(n^2+2n-4⋮11\Leftrightarrow\left(n-3\right)\left(n+5\right)⋮11\Leftrightarrow\left[{}\begin{matrix}n-3⋮11\\n+5⋮11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=BS11+3\\n=BS11-5\end{matrix}\right.\)
c,\(\dfrac{n^3-n^2+2n+7}{n^2+1}=\dfrac{n^3+n-n^2-1+n+8}{n^2+1}=\dfrac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}=n-1+\dfrac{n+8}{n^2+1}\)
Để \(n^3-n^2+2n+7⋮n^2+1\Leftrightarrow n+8⋮n^2+1\)
\(\Rightarrow\left(n+8\right)\left(n-8\right)⋮n^2+1\Rightarrow n^2-64⋮n^2+1\)
\(\Rightarrow n^2+1-65⋮n^2+1\Rightarrow65⋮n^2+1\)
\(\Rightarrow n^2+1\inƯ\left(65\right)=\left\{\pm1;\pm5;\pm13;\pm65\right\}\)
Mà \(n^2+1\ge1\Rightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Rightarrow n\in\left\{0;\pm2;\sqrt{12};\pm8\right\}\)
Đặt \(B=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\)
Đặt \(A=\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
\(=\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
\(=n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
\(=\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}=n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2}\right)=n.B\)
\(A:B=n\)
Nguyễn Trần Thành ĐạtXuân Tuấn TrịnhHung nguyenHoang HungQuan Ace Legona giúp với
=0
mk lớp 5 cũng biết nè
mk khẳng dịnh nó bằng 0