
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) Ta có: \(x^4+3x^3-7x^2-27x-18\)
\(=x^4-3x^3+6x^3-18x^2+11x^2-33x+6x-18\)
\(=x^3\left(x-3\right)+6x^2\left(x-3\right)+11x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3+6x^2+11x+6\right)\)
\(=\left(x-3\right)\left(x^3+x^2+5x^2+5x+6x+6\right)\)
\(=\left(x-3\right)\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+1\right)\left(x^2+5x+6\right)\)
\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
b) Ta có: \(x^3-8x^2+x+42\)
\(=x^3-7x^2-x^2+7x-6x+42\)
\(=x^2\left(x-7\right)-x\left(x-7\right)-6\left(x-7\right)\)
\(=\left(x-7\right)\left(x^2-x-6\right)\)
\(=\left(x-7\right)\left(x-3\right)\left(x+2\right)\)
c) Ta có: \(x^4+5x^3-7x^2-41x-30\)
\(=x^4+5x^3-7x^2-35x-6x-30\)
\(=x^3\left(x+5\right)-7x\left(x+5\right)-6\left(x+5\right)\)
\(=\left(x+5\right)\left(x^3-7x-6\right)\)
\(=\left(x+5\right)\left(x^3-x-6x-6\right)\)
\(=\left(x+5\right)\left[x\left(x^2-1\right)-6\left(x+1\right)\right]\)
\(=\left(x+5\right)\left[x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\right]\)
\(=\left(x+5\right)\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+5\right)\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
a ) \(==>x^3.\left(x+3\right)-\left(7x^2+27x+18\right)\)
ko xét phần x^3.( x+3 ) nữa mà mik phân tích trong ngoặc nha zo thi ko lm như vậy mà ghi lại phần đó nha
\(7x^2+21x+6x+18\)
\(7x\left(x+3\right)+6\left(x+3\right)\)
\(\left(x+3\right)\left(7x+6\right)\)
==> \(x^3.\left(x+3\right)-\left(x+3\right)\left(7x+6\right)\)
==>\(\left(x+3\right)\left(x^3-7x-6\right)\)

a) Ta có: \(3x^2-6xy+3y^2\)
\(=3\left(x^2-2xy+y^2\right)\)
\(=3\left(x-y\right)^2\)
b) Ta có: \(12x^5y+24x^4y^2+12x^3y^3\)
\(=12x^3y\left(x^2+2xy+y^2\right)\)
\(=12x^3y\left(x+y\right)^2\)
c) Ta có: \(64xy-96x^2y+48x^3y-8x^4y\)
\(=8xy\left(8-12x+6x^2-x^3\right)\)
\(=8xy\left(2-x\right)^3\)
d) Ta có: \(54x^3+16y^3\)
\(=2\left(27x^3+8y^3\right)\)
\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(a,17x^3y^2-34x^2y^2+51x^2y^3\)
\(=17x^2y^2\left(x-2+3y\right)\)
\(b,16x^2\left(x^2-y\right)-10y\left(y-x^2\right)\)
\(=16x^2\left(x^2-y\right)+10y\left(x^2-y\right)\)
\(=\left(x^2-y\right)\left(16x^2+10y\right)\)
\(=2\left(x^2-y\right)\left(8x^2+5y\right)\)
\(c,x^2+2xy+y^2-xz-yz\)
\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)
\(=\left(x+y\right)^2-z\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-z\right)\)
\(d,64xy-96x^2y+48x^3y-8x^4y\)
\(=8xy\left(8-12x+6x^2-x^3\right)\)
\(=-8xy\left(x^3-6x^2+12x-8\right)\)
\(=-8xy\left(x-2\right)^3\)
a) 17 x3y2-34x2y2+51x2y3
= 17x2y2 ( x - 2 + 3y )
b) 16x2(x2-y)-10y(y-x2)
= 16x2( x2 - y ) + 10y ( x2 - y )
= (x2 - y ) (16x2 + 10y )
c)x2+2xy+y2-xz-yz
= ( x2 + 2xy + y2 ) - ( xz + yz )
= ( x + y )2 - z ( x + y )
= ( x + y ) ( x + y - z )
d)64xy-96x2y+48x3y-8x4y ( Bài này mình không chắc =)) )
= 8xy ( 8 - 12x + 6x2 - x3 )

Giải:
\(8x^3-48x^2+96x-64=0\)
\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.4+3.2x.4^2-4^3=0\)
\(\Leftrightarrow\left(2x-4\right)^3=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
Vậy \(x=2\).
Chúc bạn học tốt!

a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)
\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)
\(=\left(y^2+z\right)\left(x^2+y\right)\)
b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)
\(=x^2\left(x+2y\right)-\left(x+2y\right)\)
\(=\left(x^2-1\right)\left(x+2y\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)