K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2020

a) Ta có: \(x^4+3x^3-7x^2-27x-18\)

\(=x^4-3x^3+6x^3-18x^2+11x^2-33x+6x-18\)

\(=x^3\left(x-3\right)+6x^2\left(x-3\right)+11x\left(x-3\right)+6\left(x-3\right)\)

\(=\left(x-3\right)\left(x^3+6x^2+11x+6\right)\)

\(=\left(x-3\right)\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=\left(x-3\right)\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=\left(x-3\right)\left(x+1\right)\left(x^2+5x+6\right)\)

\(=\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(x^3-8x^2+x+42\)

\(=x^3-7x^2-x^2+7x-6x+42\)

\(=x^2\left(x-7\right)-x\left(x-7\right)-6\left(x-7\right)\)

\(=\left(x-7\right)\left(x^2-x-6\right)\)

\(=\left(x-7\right)\left(x-3\right)\left(x+2\right)\)

c) Ta có: \(x^4+5x^3-7x^2-41x-30\)

\(=x^4+5x^3-7x^2-35x-6x-30\)

\(=x^3\left(x+5\right)-7x\left(x+5\right)-6\left(x+5\right)\)

\(=\left(x+5\right)\left(x^3-7x-6\right)\)

\(=\left(x+5\right)\left(x^3-x-6x-6\right)\)

\(=\left(x+5\right)\left[x\left(x^2-1\right)-6\left(x+1\right)\right]\)

\(=\left(x+5\right)\left[x\left(x-1\right)\left(x+1\right)-6\left(x+1\right)\right]\)

\(=\left(x+5\right)\left(x+1\right)\left(x^2-x-6\right)\)

\(=\left(x+5\right)\left(x+1\right)\left(x-3\right)\left(x+2\right)\)

28 tháng 10 2020

a ) \(==>x^3.\left(x+3\right)-\left(7x^2+27x+18\right)\)

ko xét phần x^3.( x+3 ) nữa mà mik phân tích trong ngoặc nha zo thi ko lm như vậy mà ghi lại phần đó nha

\(7x^2+21x+6x+18\)

\(7x\left(x+3\right)+6\left(x+3\right)\)

\(\left(x+3\right)\left(7x+6\right)\)

==> \(x^3.\left(x+3\right)-\left(x+3\right)\left(7x+6\right)\)

==>\(\left(x+3\right)\left(x^3-7x-6\right)\)

a) Ta có: \(3x^2-6xy+3y^2\)

\(=3\left(x^2-2xy+y^2\right)\)

\(=3\left(x-y\right)^2\)

b) Ta có: \(12x^5y+24x^4y^2+12x^3y^3\)

\(=12x^3y\left(x^2+2xy+y^2\right)\)

\(=12x^3y\left(x+y\right)^2\)

c) Ta có: \(64xy-96x^2y+48x^3y-8x^4y\)

\(=8xy\left(8-12x+6x^2-x^3\right)\)

\(=8xy\left(2-x\right)^3\)

d) Ta có: \(54x^3+16y^3\)

\(=2\left(27x^3+8y^3\right)\)

\(=2\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

18 tháng 10 2018

16x4y2-25a2b2

16 tháng 10 2019

1) \(x^6+1\)

\(=x^6+x^4-x^4+x^2-x^2+1\)

\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)

\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)

2) \(x^6-y^6\)

\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)

24 tháng 7 2016

a) = x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

4 tháng 8 2016

a/ 2x3 ‐5x2 + 8x ‐3

= 2x3 ‐x2 ‐4x2 +2x +6x ‐3

= x2 (2x‐1) ‐ 2x(2x‐1) + 3.(2x‐1)

= (x2‐2x+3) (2x‐1) 

b/ 3x3 ‐ 14x2 +4x +3

= 3x3 +x2 ‐15 x2 ‐5x +9x +3

= x2(3x+1) ‐5.x (3x+1) +3. (3x+1) 

= (x2 ‐5x+3) (3x+1) 

5 tháng 12 2017

\(a,17x^3y^2-34x^2y^2+51x^2y^3\)

\(=17x^2y^2\left(x-2+3y\right)\)

\(b,16x^2\left(x^2-y\right)-10y\left(y-x^2\right)\)

\(=16x^2\left(x^2-y\right)+10y\left(x^2-y\right)\)

\(=\left(x^2-y\right)\left(16x^2+10y\right)\)

\(=2\left(x^2-y\right)\left(8x^2+5y\right)\)

\(c,x^2+2xy+y^2-xz-yz\)

\(=\left(x^2+2xy+y^2\right)-\left(xz+yz\right)\)

\(=\left(x+y\right)^2-z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y-z\right)\)

\(d,64xy-96x^2y+48x^3y-8x^4y\)

\(=8xy\left(8-12x+6x^2-x^3\right)\)

\(=-8xy\left(x^3-6x^2+12x-8\right)\)

\(=-8xy\left(x-2\right)^3\)

5 tháng 12 2017

a) 17 x3y2-34x2y2+51x2y3
= 17x2y2 ( x - 2 + 3y )

b) 16x2(x2-y)-10y(y-x2)
= 16x2( x2 - y ) + 10y ( x2 - y )
= (x2 - y ) (16x2 + 10y )

c)x2+2xy+y2-xz-yz
= ( x2 + 2xy + y2 ) - ( xz + yz )
= ( x + y )2 - z ( x + y )
= ( x + y ) ( x + y - z )

d)64xy-96x2y+48x3y-8x4y ( Bài này mình không chắc =)) )
= 8xy ( 8 - 12x + 6x2 - x3 )

28 tháng 9 2017

Giải:

\(8x^3-48x^2+96x-64=0\)

\(\Leftrightarrow\left(2x\right)^3-3.\left(2x\right)^2.4+3.2x.4^2-4^3=0\)

\(\Leftrightarrow\left(2x-4\right)^3=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

Vậy \(x=2\).

Chúc bạn học tốt!

28 tháng 9 2017

cả câu này nx ạ: 49x2-25(x+1)2=0

4x2-25-(2x-5)(2x+7)=0

2 tháng 7 2018

a,\(x^2y^2+y^3+zx^2+yz=\left(x^2y^2+y^3\right)+\left(zx^2+yz\right)\)

\(=y^2\left(x^2+y\right)+z\left(x^2+y\right)\)

\(=\left(y^2+z\right)\left(x^2+y\right)\)

b,\(x^4+2x^3-4x-4=x^4+2x^3+x^2-x^2-4x-4\)

\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

c,\(x^3+2x^2y-x-2y=\left(x^3+2x^2y\right)-\left(x+2y\right)\)

\(=x^2\left(x+2y\right)-\left(x+2y\right)\)

\(=\left(x^2-1\right)\left(x+2y\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2y\right)\)