Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: BE⊥AM
CF⊥AM
Do đó;BE//CF
Xét ΔBME vuông tại E và ΔCMF vuông tại F có
BM=CM
\(\widehat{BME}=\widehat{CMF}\)
Do đó: ΔBME=ΔCMF
Suy ra:BE=CF
b: ta có: ΔBME=ΔCMF
nên ME=MF
c: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: EC//BF và EC=BF
Cold Wind:nhưng mỗi lần kéo chuột lên nhìn đầu bài lại kéo xuống làm khó chiụ lắm
Nhiều quá bạn ơi ! Bạn nên chọn lọc những bài khó rồi đưa lên, chứ như vậy thì làm mấy ngày mới xong. Mình đoán đây là bài tập hè của bạn nhưng bạn lười làm nên lên đây hỏi
Bạn làm ơn chụp ảnh rõ hơn được không? Mình không nhìn thấy gì hết ớ!
1: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó:ΔABD=ΔACD
2: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
3: Xét ΔMEA vuông tại E và ΔMED vuông tại E có
ME chung
EA=ED
Do đó: ΔMEA=ΔMED
Bài 1:
Vì góc ECD = QPC ( nằm ở vị trí đồng vị )
=> AE // MQ ( đpcm )
Vì CBN và BNM là 2 góc so le trong
=> CBN // BNM ( đpcm )
Bài 2:
a, Vì MAC và NCA là 2 góc trong cùng phía bù nhau
=> MAC + NCA = 110* + 70* = 180*
=> AB // CD
b, Vì AB // CD ( câu a )
và BD _|_ DC
=> BD _|_ AB
Bài 1:
a) Ta có:
\(\widehat{C} = \widehat{P} = 50^O\) (hình vẽ)
mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\) AD // MQ (dhnb)
b) Vì AD // MQ (cmt)
\(\Rightarrow\)\(\widehat{CBN} = \widehat{BNM}\) ( so le trong)
Bài 1 (dưới)
a) Ta có:
\(\widehat{MAC} + \widehat{ACN} = 70^O + 110^O = 180^O\)
mà 2 góc này nằm ở vị trí trong cùng phía
\(\Rightarrow\) AB // CD
b) Ta có:
AB // CD (cmt)
\(BD \perp DN\) (hình vẽ)
\(\Rightarrow\)\(BD \perp AB\) (Định lí 3 trong bài từ vuông góc đến song song)
Bài 4:
a: 3,02>3,01
b: 7,548>7,513
c: 0,47854<0,49826
d: 2,424242>-2,424242
a) Có \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\) ( tính chất \(\Delta\) cân )
\(\widehat{ABC}+\widehat{ABM}=180^o\) ( 2 góc kề bù )
\(\widehat{ACB}=\widehat{ACN}=180^o\) ( 2 góc kề bù )
nên \(\widehat{ABM}=\widehat{ACN}\)
lại có AB = AC ( \(\Delta ABC\) cân tại A )
MB = NC ( gt )
do đó \(\Delta ABM=\Delta ACN\) ( c.g.c )
b) Vì \(\Delta ABM=\Delta ACN\) ( c/m câu a )
\(\Rightarrow\widehat{HAB}=\widehat{CAK}\) ( 2 góc tương ứng )
lại có \(\widehat{AHB}=\widehat{AKC}\left(=90^o\right)\)
AB = AC ( gt )
do đó \(\Delta AHB=\Delta AKC\) ( cạnh huyền - góc nhọn )
\(\Rightarrow\) BH = CK ( 2 cạnh t/ứ )