Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x(x + 2) = 0
=> x = 0
x + 2 = 0
=> x = 0
x = -2
Vậy x = 0 hoặc x = -2
Ta có : (x + 1)(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
X:(\(\frac{2}{9}-\frac{1}{5}\))=\(\frac{8}{16}\)
x:\(\frac{1}{45}\) =\(\frac{8}{16}\)
x: =\(\frac{8}{16}.\frac{1}{45}\)
x: =\(\frac{1}{90}\)
1.
Ta có: \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)
\(\Rightarrow\frac{1}{2}a.\frac{1}{6}=\frac{2}{3}b.\frac{1}{6}=\frac{3}{4}c.\frac{1}{6}\)
\(\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow\hept{\begin{cases}a=5.12=60\\b=5.9=45\\c=5.8=40\end{cases}}\)
Vậy \(\hept{\begin{cases}a=60\\b=45\\c=40\end{cases}}\)
2. Đặt \(a_1+a_2+...+a_n=d\)
ÁP dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=...=\frac{x_n}{a_n}=\frac{x_1+x_2+...+x_n}{a_1+a_2+...+a_n}=\frac{c}{d}\)
\(\Rightarrow x_1=\frac{c}{d}.a_1;x_2=\frac{c}{d}.a_2;....;x_n=\frac{c}{d}.a_n\)
Dài ngoằng nhìn phát ngán
a)\(\left(x^4\right)^{^3}=\frac{x^{18}}{x^7}\Leftrightarrow x^{12}=x^{18-7}\Leftrightarrow x^{12}=x^{11}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)