\(8!\cdot9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

Ta có : \(\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=2015.5\)

\(\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{a+b}{a+b}+\frac{a+c}{c+a}+\frac{b+c}{b+c}=2015.5\)

\(\Leftrightarrow Q+3=2015.5\Rightarrow Q=2015.5-3=10072\)

13 tháng 5 2019

\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{95.98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{98}\right)\)

\(A=\frac{1}{3}.\frac{48}{98}\)

\(A=\frac{8}{49}\)

13 tháng 5 2019

A = \(\frac{1}{3}\).{ \(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\)}

A = \(\frac{1}{3}\).{\(\frac{1}{2}-\frac{1}{98}\)}

A = \(\frac{1}{3}.\left\{\frac{49}{98}-\frac{1}{98}\right\}\)

A=\(\frac{1}{3}.\frac{24}{49}\)

A = \(\frac{49}{98}\)

8 tháng 7 2021

\(\frac{22}{9}-\left(x+\frac{1}{2}\right)^2=\frac{7}{3}\)

\(\left(x+\frac{1}{2}\right)^2=\frac{22}{9}-\frac{7}{3}\)

\(\left(x+\frac{1}{2}\right)^2=\frac{1}{9}\)

\(\left(x+\frac{1}{2}\right)^2=\left(\frac{1}{3}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{1}{3}\)

\(x=\frac{1}{3}-\frac{1}{2}\)

\(x=-\frac{1}{6}\)

8 tháng 7 2021

\(\frac{22}{9}-\left(x+\frac{1}{2}\right)^2=\frac{7}{3}\)

\(\left(x+\frac{1}{2}\right)^2=\frac{22}{9}=\frac{7}{3}\)\

\(\left(x+\frac{1}{2}\right)^2=\frac{22}{9}-\frac{21}{9}\)

\(\left(x+\frac{1}{2}\right)^2=\frac{1}{9}\)

\(\Rightarrow x+\frac{1}{2}=\pm\frac{1}{3}\)

TH1:\(x+\frac{1}{2}=\frac{1}{3}\)

       \(x=\frac{1}{3}-\frac{1}{2}\)

        \(x=-\frac{1}{6}\)

TH2:\(x+\frac{1}{2}=-\frac{1}{3}\)

        \(x=-\frac{1}{3}-\frac{1}{2}\)

       \(x=-\frac{5}{6}\)

Vậy \(x\in\left\{-\frac{1}{6};-\frac{5}{6}\right\}\)

21 tháng 7 2017

\(\frac{1.bc}{abc}+\frac{1.ac}{abc}+\frac{1.ab}{abc}=1\)

\(bc+ac+ab=abc\)

phần sau bạn làm nốt nhé 

9 tháng 8 2015

\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)

\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)

29 tháng 5 2020

A=\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)

\(\frac{1}{2}\)A= \(\frac{1}{2}.\left(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\right)\)

\(\frac{1}{2}A\)\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\)

\(\frac{1}{2}A\)\(\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2020-2018}{2018.2020}\)

\(\frac{1}{2}A\)\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)

\(\frac{1}{2}A\)\(\frac{1}{2}-\frac{1}{2020}\)

\(\frac{1}{2}A=\frac{1009}{2020}\)

\(A=\frac{1009}{2020}:\frac{1}{2}\)

\(A=\frac{1009}{1010}\)

29 tháng 5 2020

a) Ta có 

A= 4/2*4+4/4*6+....+4/2018*2020

=> A= 2*(2/2*4+2/4*6+...+2*(2018*2020)

=> A= 2*(1/2-1/4+1/4-1/6+...+1/2018-1/2020)

=> A= 2*(1/2-1/2020)

=> A= 2* 1009/2020

=> A= 1009/1010

b) B= 1/18+1/54+1/108+...+1/990

=> B= 3/3*(1/18+1/54+1/108+..+1/990)

=> B= 1/3*( 3/3*6+3/6*9+...+3/30*33)

=> B= 1/3*(1/3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)

=> B= 1/3*( 1/3-1/33)

=> B=1/3*10/33

=> B=10/99

30 tháng 3 2020

ẽ2d3z3

1 tháng 3 2019

a) \(C=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{73.76}\)

\(C=1.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{73}-\frac{1}{76}\right)\)

\(C=1.\left(\frac{1}{4}-\frac{1}{76}\right)\)

\(C=1.\frac{9}{38}\)

\(C=\frac{9}{38}\)

b) \(D=\frac{5}{10.11}+\frac{5}{11.12}+\frac{5}{12.13}+...+\frac{5}{99.100}\)

\(D=5.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{99}+\frac{1}{100}\right)\)

\(D=5.\left(\frac{1}{10}-\frac{1}{100}\right)\)

\(D=5.\frac{9}{100}\)

\(D=\frac{99}{20}\)